BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 1600246)

  • 21. A serum free approach towards the conservation of chondrogenic phenotype during in vitro cell expansion.
    Ho ST; Yang Z; Hui HP; Oh KW; Choo BH; Lee EH
    Growth Factors; 2009 Oct; 27(5):321-33. PubMed ID: 19626506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary study of mesenchymal stem cells-seeded type I collagen-glycosaminoglycan matrices for cartilage repair.
    Xiang Z; Hu W; Kong Q; Zhou H; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Feb; 20(2):148-54. PubMed ID: 16529325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basement membrane composition of cartilage canals during development and ossification of the epiphysis.
    Ganey TM; Ogden JA; Sasse J; Neame PJ; Hilbelink DR
    Anat Rec; 1995 Mar; 241(3):425-37. PubMed ID: 7755183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering.
    Van Osch GJ; Mandl EW; Jahr H; Koevoet W; Nolst-Trenité G; Verhaar JA
    Biorheology; 2004; 41(3-4):411-21. PubMed ID: 15299273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deposition of type X collagen in the cartilage extracellular matrix.
    Cancedda R; Capasso O; Castagnola P; Descalzi-Cancedda F; Quarto N
    J Cell Biochem; 1985; 28(1):7-14. PubMed ID: 4030902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of the morphological, histochemical and biochemical features of embryonic chick sternal chondrocytes in vivo with chondrocytes cultured in three-dimensional collagen gels.
    McClure J; Bates GP; Rowston H; Grant ME
    Bone Miner; 1988 Jan; 3(3):235-47. PubMed ID: 3061535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Embryonic mouse pre-metatarsal development in organ culture.
    Klement BJ; Spooner BS
    J Exp Zool; 1993 Mar; 265(3):285-94. PubMed ID: 8436920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental expression of human cartilage matrix protein.
    Mundlos S; Zabel B
    Dev Dyn; 1994 Mar; 199(3):241-52. PubMed ID: 8018988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chondroid bone arises from mesenchymal stem cells in organ culture of mandibular condyles.
    Silbermann M; Reddi AH; Hand AR; Leapman R; von der Mark K; Franzen A
    J Craniofac Genet Dev Biol; 1987; 7(1):59-79. PubMed ID: 3597722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Type X collagen isolated from the hypertrophic cartilage of embryonic chick tibiae contains both hydroxylysyl- and lysylpyridinoline cross-links.
    Orth MW; Luchene LJ; Schmid TM
    Biochem Biophys Res Commun; 1996 Feb; 219(2):301-5. PubMed ID: 8604981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro.
    Binette F; McQuaid DP; Haudenschild DR; Yaeger PC; McPherson JM; Tubo R
    J Orthop Res; 1998 Mar; 16(2):207-16. PubMed ID: 9621895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulatory mechanisms in the development of bone and cartilage: the use of tissue culture techniques in the study of the development of embryonic bone and cartilage: a perspective.
    Nijweide PJ; Burger EH; Hekkelman JW; Herrmann-Erlee MP; Gaillard PJ
    Prog Clin Biol Res; 1982; 101():457-80. PubMed ID: 7156153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells.
    Wong M; Tuan RS
    Dev Biol; 1995 Jan; 167(1):130-47. PubMed ID: 7851637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Type X collagen does not bind to matrix vesicles.
    Inao S; Conrad HE
    Hokkaido Igaku Zasshi; 1993 Mar; 68(2):214-23. PubMed ID: 8509064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of up-regulated genes during chondrocyte hypertrophy.
    Nurminskaya M; Linsenmayer TF
    Dev Dyn; 1996 Jul; 206(3):260-71. PubMed ID: 8896982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the tibiotarsus in the chick embryo: biosynthetic activities of histologically distinct regions.
    Stocum DL; Davis RM; Leger M; Conrad HE
    J Embryol Exp Morphol; 1979 Dec; 54():155-70. PubMed ID: 528862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terminal differentiation of chondrocytes in culture is a spontaneous process and is arrested by transforming growth factor-beta 2 and basic fibroblast growth factor in synergy.
    Böhme K; Winterhalter KH; Bruckner P
    Exp Cell Res; 1995 Jan; 216(1):191-8. PubMed ID: 7813620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trans-differentiation of hypertrophic chondrocytes into cells capable of producing a mineralized bone matrix.
    Roach HI
    Bone Miner; 1992 Oct; 19(1):1-20. PubMed ID: 1422302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of hypertrophic cartilage in endochondral ossification.
    Navagiri SS; Dubey PN
    Z Mikrosk Anat Forsch; 1976; 90(3):435-46. PubMed ID: 1031507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.