These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16002624)

  • 1. Why FRET? Focus on "beta-Adrenergic and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes using a FRET-based biosensor".
    Hammond HK
    Am J Physiol Cell Physiol; 2005 Aug; 289(2):C246-7. PubMed ID: 16002624
    [No Abstract]   [Full Text] [Related]  

  • 2. Beta-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor.
    Warrier S; Belevych AE; Ruse M; Eckert RL; Zaccolo M; Pozzan T; Harvey RD
    Am J Physiol Cell Physiol; 2005 Aug; 289(2):C455-61. PubMed ID: 15788489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility.
    Surdo NC; Berrera M; Koschinski A; Brescia M; Machado MR; Carr C; Wright P; Gorelik J; Morotti S; Grandi E; Bers DM; Pantano S; Zaccolo M
    Nat Commun; 2017 Apr; 8():15031. PubMed ID: 28425435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic cAMP concentrations in intact cardiac myocytes.
    Iancu RV; Ramamurthy G; Warrier S; Nikolaev VO; Lohse MJ; Jones SW; Harvey RD
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C414-22. PubMed ID: 18550706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling.
    Nikolaev VO; Bünemann M; Schmitteckert E; Lohse MJ; Engelhardt S
    Circ Res; 2006 Nov; 99(10):1084-91. PubMed ID: 17038640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a high-throughput assay for monitoring cAMP levels in cardiac ventricular myocytes.
    Walsh KB; Rich TC; Coffman ZJ
    J Cardiovasc Pharmacol; 2009 Mar; 53(3):223-30. PubMed ID: 19247193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A; Mika D
    J Mol Cell Cardiol; 2019 Jun; 131():112-121. PubMed ID: 31028775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenoviral transduction of FRET-based biosensors for cAMP in primary adult mouse cardiomyocytes.
    Lomas O; Brescia M; Carnicer R; Monterisi S; Surdo NC; Zaccolo M
    Methods Mol Biol; 2015; 1294():103-15. PubMed ID: 25783880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscarinic modulation of the sodium-calcium exchanger in heart failure.
    Wei SK; Ruknudin AM; Shou M; McCurley JM; Hanlon SU; Elgin E; Schulze DH; Haigney MC
    Circulation; 2007 Mar; 115(10):1225-33. PubMed ID: 17339552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation.
    Tomita H; Nazmy M; Kajimoto K; Yehia G; Molina CA; Sadoshima J
    Circ Res; 2003 Jul; 93(1):12-22. PubMed ID: 12791704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy.
    Perera RK; Sprenger JU; Steinbrecher JH; Hübscher D; Lehnart SE; Abesser M; Schuh K; El-Armouche A; Nikolaev VO
    Circ Res; 2015 Apr; 116(8):1304-11. PubMed ID: 25688144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRETting mice shed light on cardiac adrenergic signaling.
    DiPilato LM; Zhang J
    Circ Res; 2006 Nov; 99(10):1021-3. PubMed ID: 17095728
    [No Abstract]   [Full Text] [Related]  

  • 13. cAMP biosensors applied in molecular pharmacological studies of G protein-coupled receptors.
    Mathiesen JM; Vedel L; Bräuner-Osborne H
    Methods Enzymol; 2013; 522():191-207. PubMed ID: 23374187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha 1- and beta-adrenergic and muscarinic cholinergic receptors in guinea-pig nasal mucosa.
    Ishibe T; Kuno T; Tanaka C
    Eur J Pharmacol; 1984 Oct; 106(1):107-12. PubMed ID: 6099264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of membrane microdomains in shaping beta2-adrenergic receptor-mediated cAMP dynamics.
    DiPilato LM; Zhang J
    Mol Biosyst; 2009 Aug; 5(8):832-7. PubMed ID: 19603118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concanavalin A amplifies both beta-adrenergic and muscarinic cholinergic receptor-adenylate cyclase-linked pathways in cardiac myocytes.
    Rocha-Singh KJ; Hines DK; Honbo NY; Karliner JS
    J Clin Invest; 1991 Sep; 88(3):760-6. PubMed ID: 1653274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring spatiotemporal dynamics of cyclic AMP signaling in real-time using FRET-based biosensors.
    Gesellchen F; Stangherlin A; Surdo N; Terrin A; Zoccarato A; Zaccolo M
    Methods Mol Biol; 2011; 746():297-316. PubMed ID: 21607864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A preliminary study on the mechanism of changes of beta and M receptors in the lung tissue of guinea pigs with experimental allergic asthma].
    Lu BZ
    Zhonghua Yi Xue Za Zhi; 1986 Jul; 66(7):401-4, 448. PubMed ID: 2876761
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigating cardiac β-adrenergic nuclear signaling with FRET-based biosensors.
    Vandecasteele G; Bedioune I
    Ann Endocrinol (Paris); 2021 Jun; 82(3-4):198-200. PubMed ID: 32482343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscarinic receptor subtypes, beta-adrenoceptors and cAMP in the tracheal smooth muscle of conventional and double-muscled calves.
    Roets E; Burvenich C; Roberts M
    Vet Res Commun; 1992; 16(6):465-76. PubMed ID: 1338239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.