These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16003819)

  • 1. Cyclohexane-based low molecular weight hydrogelators: a chirality investigation.
    Friggeri A; van der Pol C; van Bommel KJ; Heeres A; Stuart MC; Feringa BL; van Esch J
    Chemistry; 2005 Sep; 11(18):5353-61. PubMed ID: 16003819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sol-gel polycondensation of tetraethyl orthosilicate (TEOS) in sugar-based porphyrin organogels: inorganic conversion of a sugar-directed porphyrinic fiber library through sol-gel transcription processes.
    Kawano S; Tamaru S; Fujita N; Shinkai S
    Chemistry; 2004 Jan; 10(2):343-51. PubMed ID: 14735502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-lysine-based low-molecular-weight gelators.
    Suzuki M; Hanabusa K
    Chem Soc Rev; 2009 Apr; 38(4):967-75. PubMed ID: 19421575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group.
    Suzuki M; Yumoto M; Kimura M; Shirai H; Hanabusa K
    Chemistry; 2003 Jan; 9(1):348-54. PubMed ID: 12506392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular gels formed by amphiphilic low-molecular-weight gelators of N alpha,N epsilon-diacyl-L-lysine derivatives.
    Suzuki M; Yumoto M; Shirai H; Hanabusa K
    Chemistry; 2008; 14(7):2133-44. PubMed ID: 18161708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of double silica nanotubes by using crown-appended cholesterol nanotubes.
    Jung JH; Lee SH; Yoo JS; Yoshida K; Shimizu T; Shinkai S
    Chemistry; 2003 Nov; 9(21):5307-13. PubMed ID: 14613140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of esters of arjunolic acid into fibrous networks and the properties of their organogels.
    Bag BG; Dinda SK; Dey PP; Mallia VA; Weiss RG
    Langmuir; 2009 Aug; 25(15):8663-71. PubMed ID: 19391592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer from a fluorescent hydrogel to a hosted fluorophore.
    Montalti M; Dolci LS; Prodi L; Zaccheroni N; Stuart MC; van Bommel KJ; Friggeri A
    Langmuir; 2006 Feb; 22(5):2299-303. PubMed ID: 16489821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of intercolumnar π-π stacking interactions in amino-acid-based low-molecular-weight organogels.
    Allix F; Curcio P; Pham QN; Pickaert G; Jamart-Grégoire B
    Langmuir; 2010 Nov; 26(22):16818-27. PubMed ID: 20873848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-based fluorescent low-molecular mass compounds: creation of simple and versatile supramolecular gelators.
    Yan N; He G; Zhang H; Ding L; Fang Y
    Langmuir; 2010 Apr; 26(8):5909-17. PubMed ID: 20030351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator.
    Friggeri A; Feringa BL; van Esch J
    J Control Release; 2004 Jun; 97(2):241-8. PubMed ID: 15196751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoresponsive dithienylethene-urea-based organogels with "reversed" behavior.
    Akazawa M; Uchida K; de Jong JJ; Areephong J; Stuart M; Caroli G; Browne WR; Feringa BL
    Org Biomol Chem; 2008 May; 6(9):1544-7. PubMed ID: 18421384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of monosaccharide-derived carbamates as low-molecular-weight gelators.
    Wang G; Cheuk S; Yang H; Goyal N; Reddy PV; Hopkinson B
    Langmuir; 2009 Aug; 25(15):8696-705. PubMed ID: 19449815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New dicholesteryl-based gelators: chirality and spacer length effect.
    Peng J; Liu K; Liu J; Zhang Q; Feng X; Fang Y
    Langmuir; 2008 Apr; 24(7):2992-3000. PubMed ID: 18294019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quater-, quinque-, and sexithiophene organogelators: unique thermochromism and heating-free sol-gel phase transition.
    Kawano S; Fujita N; Shinkai S
    Chemistry; 2005 Aug; 11(16):4735-42. PubMed ID: 15912544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically transparent hydrogels from an auxin-amino-acid conjugate super hydrogelator and its interactions with an entrapped dye.
    Reddy A; Sharma A; Srivastava A
    Chemistry; 2012 Jun; 18(24):7575-81. PubMed ID: 22532500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel dimeric cholesteryl-based A(LS)2 low-molecular-mass gelators with a benzene ring in the linker.
    Xue M; Liu K; Peng J; Zhang Q; Fang Y
    J Colloid Interface Sci; 2008 Nov; 327(1):94-101. PubMed ID: 18774141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures.
    Trivedi DR; Ballabh A; Dastidar P; Ganguly B
    Chemistry; 2004 Oct; 10(21):5311-22. PubMed ID: 15378683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A favorable, narrow, δ(h) Hansen-parameter domain for gelation of low-molecular-weight amino acid derivatives.
    Curcio P; Allix F; Pickaert G; Jamart-Grégoire B
    Chemistry; 2011 Nov; 17(48):13603-12. PubMed ID: 22025290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.