These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 16003940)

  • 1. Learning to produce predicted static handgrip forces.
    Angyán L; Téczely T; Karsai I
    Acta Physiol Hung; 2005; 92(1):11-8. PubMed ID: 16003940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Externally guided control of static grip forces by visual feedback-age and task effects in 3-6-year old children and in adults.
    Blank R; Heizer W; von Voss H
    Neurosci Lett; 1999 Aug; 271(1):41-4. PubMed ID: 10471209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ability to assess muscular force in asymmetrical Parkinson's disease.
    Lafargue G; D'Amico A; Thobois S; Broussolle E; Sirigu A
    Cortex; 2008 Jan; 44(1):82-9. PubMed ID: 18387534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation.
    Hermsdörfer J; Elias Z; Cole JD; Quaney BM; Nowak DA
    Neurorehabil Neural Repair; 2008; 22(4):374-84. PubMed ID: 18223241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp.
    Cole KJ; Rotella DL
    Exp Brain Res; 2002 Mar; 143(1):35-41. PubMed ID: 11907688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accuracy of perception of a pinch grip force in older adults.
    De Serres SJ; Fang NZ
    Can J Physiol Pharmacol; 2004; 82(8-9):693-701. PubMed ID: 15523526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preserved and impaired aspects of predictive grip force control in cerebellar patients.
    Rost K; Nowak DA; Timmann D; Hermsdörfer J
    Clin Neurophysiol; 2005 Jun; 116(6):1405-14. PubMed ID: 15978503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bite force and handgrip force in patients with molecular diagnosis of myotonic dystrophy.
    Guimaraes AS; Carlsson GE; Marie SK
    J Oral Rehabil; 2007 Mar; 34(3):195-200. PubMed ID: 17302947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of tactile feedback from the hand to the perception of force.
    Jones LA; Piateski E
    Exp Brain Res; 2006 Jan; 168(1-2):298-302. PubMed ID: 16307250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems.
    Hermsdörfer J; Hagl E; Nowak DA
    Hum Mov Sci; 2004 Nov; 23(5):643-62. PubMed ID: 15589626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and perception of grip force without proprioception: is there a sense of effort in deafferented subjects?
    Lafargue G; Paillard J; Lamarre Y; Sirigu A
    Eur J Neurosci; 2003 Jun; 17(12):2741-9. PubMed ID: 12823481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects.
    Augurelle AS; Smith AM; Lejeune T; Thonnard JL
    J Neurophysiol; 2003 Feb; 89(2):665-71. PubMed ID: 12574444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination between digit forces and positions: interactions between anticipatory and feedback control.
    Fu Q; Santello M
    J Neurophysiol; 2014 Apr; 111(7):1519-28. PubMed ID: 24401711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sense of effort revisited: relative contributions of sensory feedback and efferent copy.
    Scotland S; Adamo DE; Martin BJ
    Neurosci Lett; 2014 Feb; 561():208-12. PubMed ID: 24373991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed visual feedback affects both manual tracking and grip force control when transporting a handheld object.
    Sarlegna FR; Baud-Bovy G; Danion F
    J Neurophysiol; 2010 Aug; 104(2):641-53. PubMed ID: 20538774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force synergies for multifingered grasping: effect of predictability in object center of mass and handedness.
    Rearick MP; Santello M
    Exp Brain Res; 2002 May; 144(1):38-49. PubMed ID: 11976758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.
    Eidenmüller S; Randerath J; Goldenberg G; Li Y; Hermsdörfer J
    Neuropsychologia; 2014 Aug; 61():222-34. PubMed ID: 24978304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic plasticity and functional asymmetry in response to grip forces exerted by intercollegiate tennis players.
    Lucki NC; Nicolay CW
    Am J Hum Biol; 2007; 19(4):566-77. PubMed ID: 17546612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verbal regulation of grip force in preschoolers.
    Haishi K; Okuzumi H; Kokubun M; Komatsu A; Kitajima Y; Hosobuchi T
    Percept Mot Skills; 2009 Apr; 108(2):540-8. PubMed ID: 19544959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.