BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16004047)

  • 1. High-sensitivity and specificity of laser-induced autofluorescence spectra for detection of colorectal cancer with an artificial neural network.
    Kwek LC; Fu S; Chia TC; Diong CH; Tang CL; Krishnan SM
    Appl Opt; 2005 Jul; 44(19):4004-8. PubMed ID: 16004047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance and angular dependence of intensity ratios in laser-induced autofluorescence techniques.
    Kwek LC; Fu S; Chia TC; Tang CL
    Med Phys; 2004 May; 31(5):1072-5. PubMed ID: 15191294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An artificial neural network for predicting the incidence of radiation pneumonitis.
    Su M; Miften M; Whiddon C; Sun X; Light K; Marks L
    Med Phys; 2005 Feb; 32(2):318-25. PubMed ID: 15789575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental study of colorectal cancerous autofluorescent spectra induced by laser].
    Luo X; Zhang Y; Li J; Peng J; Cao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1231-3. PubMed ID: 16422107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms.
    Bizios D; Heijl A; Bengtsson B
    J Glaucoma; 2007 Jan; 16(1):20-8. PubMed ID: 17224745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Diagnosis Accuracy between a Backpropagation Artificial Neural Network Model and Linear Regression in Digestive Disease Patients: an Empirical Research.
    Wei W; Yang X
    Comput Math Methods Med; 2021; 2021():6662779. PubMed ID: 33727951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of in vivo autofluorescence spectra using support vector machines.
    Lin W; Yuan X; Yuen P; Wei WI; Sham J; Shi P; Qu J
    J Biomed Opt; 2004; 9(1):180-6. PubMed ID: 14715071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence spectroscopy for evaluating dysplasia in colorectal tissues.
    Luo XJ; Zhang B; Li JG; Luo XA; Yang LF
    Z Med Phys; 2012 Feb; 22(1):40-7. PubMed ID: 22112637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions.
    Jo JA; Fang Q; Papaioannou T; Baker JD; Dorafshar AH; Reil T; Qiao JH; Fishbein MC; Freischlag JA; Marcu L
    J Biomed Opt; 2006; 11(2):021004. PubMed ID: 16674179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epileptic EEG detection using neural networks and post-classification.
    Patnaik LM; Manyam OK
    Comput Methods Programs Biomed; 2008 Aug; 91(2):100-9. PubMed ID: 18406490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced integrated technique in breast cancer thermography.
    Ng EY; Kee EC
    J Med Eng Technol; 2008; 32(2):103-14. PubMed ID: 17852648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serum protein fingerprinting coupled with artificial neural network distinguishes glioma from healthy population or brain benign tumor.
    Liu J; Zheng S; Yu JK; Zhang JM; Chen Z
    J Zhejiang Univ Sci B; 2005 Jan; 6(1):4-10. PubMed ID: 15593384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of artificial neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer.
    Duan X; Yang Y; Tan S; Wang S; Feng X; Cui L; Feng F; Yu S; Wang W; Wu Y
    Med Biol Eng Comput; 2017 Aug; 55(8):1239-1248. PubMed ID: 27766520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Artificial Neural Network in miRNA Biomarker Selection and Precise Diagnosis of Colorectal Cancer.
    Afshar S; Afshar S; Warden E; Manochehri H; Saidijam M
    Iran Biomed J; 2019 May; 23(3):175-83. PubMed ID: 30056689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells.
    Chen K; Qin Y; Zheng F; Sun M; Shi D
    Opt Lett; 2006 Jul; 31(13):2015-7. PubMed ID: 16770417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer.
    Redden Weber C; Schwarz RA; Atkinson EN; Cox DD; Macaulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2008; 13(6):064016. PubMed ID: 19123662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of artificial neural network model combined with six tumor markers in auxiliary diagnosis of lung cancer.
    Feng F; Wu Y; Wu Y; Nie G; Ni R
    J Med Syst; 2012 Oct; 36(5):2973-80. PubMed ID: 21882004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL
    J Biomed Opt; 2004; 9(5):940-50. PubMed ID: 15447015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical pathology using oral tissue fluorescence spectra: classification by principal component analysis and k-means nearest neighbor analysis.
    Kamath SD; Mahato KK
    J Biomed Opt; 2007; 12(1):014028. PubMed ID: 17343503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated EEG preprocessing during anaesthesia: new aspects using artificial neural networks.
    Jeleazcov C; Egner S; Bremer F; Schwilden H
    Biomed Tech (Berl); 2004 May; 49(5):125-31. PubMed ID: 15212197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.