These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16004122)

  • 21. Evidence for enhanced thermal conduction through percolating structures in nanofluids.
    Philip J; Shima PD; Raj B
    Nanotechnology; 2008 Jul; 19(30):305706. PubMed ID: 21828773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions.
    Koo J; Kang Y; Kleinstreuer C
    Nanotechnology; 2008 Sep; 19(37):375705. PubMed ID: 21832559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering.
    Gao JW; Zheng RT; Ohtani H; Zhu DS; Chen G
    Nano Lett; 2009 Dec; 9(12):4128-32. PubMed ID: 19995084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Macroparameters on the Thickness of an Interfacial Nanolayer of Al
    Fan W; Zhong F
    ACS Omega; 2020 Nov; 5(43):27972-27977. PubMed ID: 33163780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of thermal distribution and fluid flow in the domain with multi-solid structures using Cubic-Interpolated Pseudo-Particle model.
    Nguyen Q; Babanezhad M; Taghvaie Nakhjiri A; Rezakazemi M; Shirazian S
    PLoS One; 2020; 15(6):e0233850. PubMed ID: 32555730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization.
    Nine MJ; Batmunkh M; Kim JH; Chung HS; Jeong HM
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4553-9. PubMed ID: 22905499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal properties of nanofluids.
    Philip J; Shima PD
    Adv Colloid Interface Sci; 2012 Nov; 183-184():30-45. PubMed ID: 22921845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. γ-Nanofluid Thermal Transport between Parallel Plates Suspended by Micro-Cantilever Sensor by Incorporating the Effective Prandtl Model: Applications to Biological and Medical Sciences.
    Khan U; Adnan ; Ahmed N; Mohyud-Din ST; Chu YM; Khan I; Nisar KS
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32294974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study on the effects of temperature and volume fraction on thermal conductivity of copper oxide nanofluid.
    Jwo CS; Chang H; Teng TP; Kao MJ; Guo YT
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2161-6. PubMed ID: 17655010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical Conductivity of New Nanoparticle Enhanced Fluids: An Experimental Study.
    Chereches EI; Minea AA
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models.
    Turkyilmazoglu M
    Comput Methods Programs Biomed; 2019 Oct; 179():104997. PubMed ID: 31443853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of Freezing Temperature Based Thermal Conductivity on the Heat Transfer Gradient in Nanofluids: Applications for a Curved Riga Surface.
    Adnan ; Zaidi SZA; Khan U; Ahmed N; Mohyud-Din ST; Chu YM; Khan I; Nisar KS
    Molecules; 2020 May; 25(9):. PubMed ID: 32380658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal conductivity of interfacial layers in nanofluids.
    Liang Z; Tsai HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041602. PubMed ID: 21599170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments.
    Kondiparty K; Nikolov A; Wu S; Wasan D
    Langmuir; 2011 Apr; 27(7):3324-35. PubMed ID: 21395240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement and Prediction of Thermal Conductivity of Nanofluids Containing TiO₂ Nanoparticles.
    Verma K; Agarwal R; Duchaniya RK; Singh R
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1068-075. PubMed ID: 29676551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid).
    Amrollahi A; Hamidi AA; Rashidi AM
    Nanotechnology; 2008 Aug; 19(31):315701. PubMed ID: 21828793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling Thermal Conduction in Nanoparticle Aggregates in the Presence of Surfactants.
    Karagiannakis NP; Skouras ED; Burganos VN
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33227926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe
    Giwa SO; Sharifpur M; Ahmadi MH; Sohel Murshed SM; Meyer JP
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33429998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the effective thermal conductivity of carbon nanotube based nanofluids.
    Venkata Sastry NN; Bhunia A; Sundararajan T; Das SK
    Nanotechnology; 2008 Feb; 19(5):055704. PubMed ID: 21817618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.