These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 16004420)
1. Structural characterization of alpha-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Bamba T; Fukusaki E; Kobayashi A; Tanaka Y Biomacromolecules; 2005; 6(4):1851-7. PubMed ID: 16004420 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. Sakdapipanich JT J Biosci Bioeng; 2007 Apr; 103(4):287-92. PubMed ID: 17502267 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization of alpha-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Tanaka Y Biomacromolecules; 2005; 6(4):1858-63. PubMed ID: 16004421 [TBL] [Abstract][Full Text] [Related]
4. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Liu J; Wu S; Tang Z; Lin T; Guo B; Huang G Soft Matter; 2015 Mar; 11(11):2290-9. PubMed ID: 25656324 [TBL] [Abstract][Full Text] [Related]
5. Characterization of associated proteins and phospholipids in natural rubber latex. Sansatsadeekul J; Sakdapipanich J; Rojruthai P J Biosci Bioeng; 2011 Jun; 111(6):628-34. PubMed ID: 21354367 [TBL] [Abstract][Full Text] [Related]
6. Structural Analysis of the Terminal Groups in Commercial Hevea Natural Rubber by 2D-NMR with DOSY Filters and Multiple-WET Methods Using Ultrahigh-Field NMR. Oouchi M; Ukawa J; Ishii Y; Maeda H Biomacromolecules; 2019 Mar; 20(3):1394-1400. PubMed ID: 30753057 [TBL] [Abstract][Full Text] [Related]
7. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Nguyen LH; Nguyen HD; Tran PT; Nghiem TT; Nguyen TT; Dao VL; Phan TN; To AK; Hatamoto M; Yamaguchi T; Kasai D; Fukuda M Biodegradation; 2020 Dec; 31(4-6):303-317. PubMed ID: 32914250 [TBL] [Abstract][Full Text] [Related]
8. Extraction and characterization of a natural rubber from Euphorbia characias latex. Spanò D; Pintus F; Mascia C; Scorciapino MA; Casu M; Floris G; Medda R Biopolymers; 2012 Aug; 97(8):589-94. PubMed ID: 22605550 [TBL] [Abstract][Full Text] [Related]
9. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Berthelot K; Lecomte S; Estevez Y; Zhendre V; Henry S; Thévenot J; Dufourc EJ; Alves ID; Peruch F Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):287-99. PubMed ID: 24036080 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber. Mekkriengkrai D; Ute K; Swiezewska E; Chojnacki T; Tanaka Y; Sakdapipanich JT Biomacromolecules; 2004; 5(5):2013-9. PubMed ID: 15360318 [TBL] [Abstract][Full Text] [Related]
12. Influence of Centrifugation Cycles of Natural Rubber Latex on Final Properties of Uncrosslinked Deproteinized Natural Rubber. Hayeemasae N; Saiwari S; Soontaranon S; Masa A Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808758 [TBL] [Abstract][Full Text] [Related]
13. Effect of chitosan content on gel content of epoxized natural rubber grafted with chitosan in latex form. Riyajan SA; Sukhlaaied W Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1041-7. PubMed ID: 23827540 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of deuterium-labelled analogs of isopentenyl diphosphate for the elucidation of the stereochemistry of rubber biosynthesis. Scholte AA; Vederas JC Org Biomol Chem; 2006 Feb; 4(4):730-42. PubMed ID: 16467948 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy. Sirisomboon P; Chowbankrang R; Williams P Appl Spectrosc; 2012 May; 66(5):595-9. PubMed ID: 22524966 [TBL] [Abstract][Full Text] [Related]
16. Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites. Thuong NT; Quang LD; Cuong VQ; Ha CH; Lam NB; Kawahara S Beilstein J Nanotechnol; 2024; 15():168-179. PubMed ID: 38352717 [TBL] [Abstract][Full Text] [Related]
17. Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation. Cabrera FC; Agostini DL; Dos Santos RJ; Guimarães FE; Guerrero AR; Aroca RF; Job AE Luminescence; 2014 Dec; 29(8):1047-52. PubMed ID: 24760547 [TBL] [Abstract][Full Text] [Related]
18. Radiation Graft-Copolymerization of Ultrafine Fully Vulcanized Powdered Natural Rubber: Effects of Styrene and Acrylonitrile Contents on Thermal Stability. Rimdusit N; Jubsilp C; Mora P; Hemvichian K; Thuy TT; Karagiannidis P; Rimdusit S Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641262 [TBL] [Abstract][Full Text] [Related]
19. The Effect of Silver Nanoparticles/Titanium Dioxide in Poly(acrylic acid- Inphonlek S; Ruksakulpiwat C; Ruksakulpiwat Y Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201757 [TBL] [Abstract][Full Text] [Related]
20. Production and characterization of natural rubber-Ca/P blends for biomedical purposes. Nascimento RM; Faita FL; Agostini DL; Job AE; Guimarães FE; Bechtold IH Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():29-34. PubMed ID: 24863193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]