These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
29. Extraction and characterization of latex and natural rubber from rubber-bearing plants. Buranov AU; Elmuradov BJ J Agric Food Chem; 2010 Jan; 58(2):734-43. PubMed ID: 20000314 [TBL] [Abstract][Full Text] [Related]
30. Identification of natural rubber degradation gene in Rhizobacter gummiphilus NS21. Kasai D; Imai S; Asano S; Tabata M; Iijima S; Kamimura N; Masai E; Fukuda M Biosci Biotechnol Biochem; 2017 Mar; 81(3):614-620. PubMed ID: 28110615 [TBL] [Abstract][Full Text] [Related]
31. A role for a Hevea latex lectin-like protein in mediating rubber particle aggregation and latex coagulation. Wititsuwannakul R; Pasitkul P; Kanokwiroon K; Wititsuwannakul D Phytochemistry; 2008 Jan; 69(2):339-47. PubMed ID: 17897690 [TBL] [Abstract][Full Text] [Related]
32. Distribution of molar mass and branching index of natural rubber from Hevea brasiliensis trees of different age by size exclusion chromatography coupled with online viscometry. Phan TN; Lan NT; Nga NT Med J Malaysia; 2004 May; 59 Suppl B():214-5. PubMed ID: 15468894 [TBL] [Abstract][Full Text] [Related]
33. Formation of calcium crystallites in dry natural rubber particles. Rippel MM; Leite CA; Lee LT; Galembeck F J Colloid Interface Sci; 2005 Aug; 288(2):449-56. PubMed ID: 15927612 [TBL] [Abstract][Full Text] [Related]
34. [Existence of an NADP-phosphatase in the core of Hevea brasiliensis latex]. Jacob JL C R Acad Hebd Seances Acad Sci D; 1969 Oct; 269(16):1573-6. PubMed ID: 4394079 [No Abstract] [Full Text] [Related]
35. Structure of cis-polyisoprene from Lactarius mushrooms. Tanaka Y; Kawahara S; Eng AH; Takei A; Ohya N Acta Biochim Pol; 1994; 41(3):303-9. PubMed ID: 7856401 [TBL] [Abstract][Full Text] [Related]
36. The Preparation of Hydroxyl-Terminated Deproteinized Natural Rubber Latex by Photochemical Reaction Utilizing Nanometric TiO Sillapasuwan A; Saekhow P; Rojruthai P; Sakdapipanich J Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890654 [TBL] [Abstract][Full Text] [Related]
37. Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Wei F; Luo S; Zheng Q; Qiu J; Yang W; Wu M; Xiao X Gene; 2015 Feb; 556(2):153-62. PubMed ID: 25431836 [TBL] [Abstract][Full Text] [Related]
38. Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species. Xie W; McMahan CM; Degraw AJ; Distefano MD; Cornish K; Whalen MC; Shintani DK Phytochemistry; 2008 Oct; 69(14):2539-45. PubMed ID: 18799172 [TBL] [Abstract][Full Text] [Related]
39. Entropic and Energetic Elasticities of Natural Rubber with a Nanomatrix Structure. Yamamoto Y; Endo K; Tévenot Q; Kosugi K; Nakajima K; Kawahara S Langmuir; 2020 Sep; 36(38):11341-11348. PubMed ID: 32833458 [TBL] [Abstract][Full Text] [Related]
40. Significant role of bacterial undecaprenyl diphosphate (C55-UPP) for rubber synthesis by Hevea latex enzymes. Rattanapittayaporn A; Wititsuwannakul D; Wititsuwannakul R Macromol Biosci; 2004 Nov; 4(11):1039-52. PubMed ID: 15543542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]