These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 16004421)
1. Structural characterization of alpha-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Tanaka Y Biomacromolecules; 2005; 6(4):1858-63. PubMed ID: 16004421 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. Sakdapipanich JT J Biosci Bioeng; 2007 Apr; 103(4):287-92. PubMed ID: 17502267 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization of alpha-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Bamba T; Fukusaki E; Kobayashi A; Tanaka Y Biomacromolecules; 2005; 6(4):1851-7. PubMed ID: 16004420 [TBL] [Abstract][Full Text] [Related]
4. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Liu J; Wu S; Tang Z; Lin T; Guo B; Huang G Soft Matter; 2015 Mar; 11(11):2290-9. PubMed ID: 25656324 [TBL] [Abstract][Full Text] [Related]
5. Characterization of associated proteins and phospholipids in natural rubber latex. Sansatsadeekul J; Sakdapipanich J; Rojruthai P J Biosci Bioeng; 2011 Jun; 111(6):628-34. PubMed ID: 21354367 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber. Mekkriengkrai D; Ute K; Swiezewska E; Chojnacki T; Tanaka Y; Sakdapipanich JT Biomacromolecules; 2004; 5(5):2013-9. PubMed ID: 15360318 [TBL] [Abstract][Full Text] [Related]
7. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Nguyen LH; Nguyen HD; Tran PT; Nghiem TT; Nguyen TT; Dao VL; Phan TN; To AK; Hatamoto M; Yamaguchi T; Kasai D; Fukuda M Biodegradation; 2020 Dec; 31(4-6):303-317. PubMed ID: 32914250 [TBL] [Abstract][Full Text] [Related]
8. Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Karino T; Ikeda Y; Yasuda Y; Kohjiya S; Shibayama M Biomacromolecules; 2007 Feb; 8(2):693-9. PubMed ID: 17243766 [TBL] [Abstract][Full Text] [Related]
9. Influence of Centrifugation Cycles of Natural Rubber Latex on Final Properties of Uncrosslinked Deproteinized Natural Rubber. Hayeemasae N; Saiwari S; Soontaranon S; Masa A Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808758 [TBL] [Abstract][Full Text] [Related]
13. Structural Analysis of the Terminal Groups in Commercial Hevea Natural Rubber by 2D-NMR with DOSY Filters and Multiple-WET Methods Using Ultrahigh-Field NMR. Oouchi M; Ukawa J; Ishii Y; Maeda H Biomacromolecules; 2019 Mar; 20(3):1394-1400. PubMed ID: 30753057 [TBL] [Abstract][Full Text] [Related]
14. Radiation Graft-Copolymerization of Ultrafine Fully Vulcanized Powdered Natural Rubber: Effects of Styrene and Acrylonitrile Contents on Thermal Stability. Rimdusit N; Jubsilp C; Mora P; Hemvichian K; Thuy TT; Karagiannidis P; Rimdusit S Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641262 [TBL] [Abstract][Full Text] [Related]
15. Preparation and Characterization of TiO Nijpanich S; Nimpaiboon A; Rojruthai P; Park JH; Hagio T; Ichino R; Sakdapipanich J Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835934 [TBL] [Abstract][Full Text] [Related]
17. Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites. Thuong NT; Quang LD; Cuong VQ; Ha CH; Lam NB; Kawahara S Beilstein J Nanotechnol; 2024; 15():168-179. PubMed ID: 38352717 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Silver Nanoparticles/Titanium Dioxide in Poly(acrylic acid- Inphonlek S; Ruksakulpiwat C; Ruksakulpiwat Y Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201757 [TBL] [Abstract][Full Text] [Related]
19. Distribution of molar mass and branching index of natural rubber from Hevea brasiliensis trees of different age by size exclusion chromatography coupled with online viscometry. Phan TN; Lan NT; Nga NT Med J Malaysia; 2004 May; 59 Suppl B():214-5. PubMed ID: 15468894 [TBL] [Abstract][Full Text] [Related]
20. FTIR spectra of plasticized grafted natural rubber-LiCF3SO3 electrolytes. Kumutha K; Alias Y Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(2):442-7. PubMed ID: 16530471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]