BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16004424)

  • 1. Hydrolytic degradation of ricinoleic-sebacic-ester-anhydride copolymers.
    Krasko MY; Domb AJ
    Biomacromolecules; 2005; 6(4):1877-84. PubMed ID: 16004424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable polyanhydride synthesized from sebacic acid and ricinoleic acid.
    Haim-Zada M; Basu A; Hagigit T; Schlinger R; Grishko M; Kraminsky A; Hanuka E; Domb AJ
    J Control Release; 2017 Jul; 257():156-162. PubMed ID: 27126904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternating Poly(ester-anhydride) by Insertion Polycondensation.
    Haim-Zada M; Basu A; Hagigit T; Schlinger R; Grishko M; Kraminsky A; Hanuka E; Domb AJ
    Biomacromolecules; 2016 Jun; 17(6):2253-9. PubMed ID: 27198864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel--effect of additives.
    Shikanov A; Ezra A; Domb AJ
    J Control Release; 2005 Jun; 105(1-2):52-67. PubMed ID: 15955366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer.
    Shikanov A; Domb AJ
    Biomacromolecules; 2006 Jan; 7(1):288-96. PubMed ID: 16398527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo degradation and elimination of injectable ricinoleic acid-based poly(ester-anhydride).
    Vaisman B; Ickowicz DE; Abtew E; Haim-Zada M; Shikanov A; Domb AJ
    Biomacromolecules; 2013 May; 14(5):1465-73. PubMed ID: 23530926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity.
    Shikanov A; Vaisman B; Krasko MY; Nyska A; Domb AJ
    J Biomed Mater Res A; 2004 Apr; 69(1):47-54. PubMed ID: 14999750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ester-anhydrides) Derived from Esters of Hydroxy Acid and Cyclic Anhydrides.
    Arun Y; Ghosh R; Domb AJ
    Biomacromolecules; 2022 Aug; 23(8):3417-3428. PubMed ID: 35881559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of polyanhydride for local BCNU delivery carriers.
    Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G
    Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of novel poly(sebacic anhydride-co-Pluronic F68/F127) biopolymeric microspheres for the controlled release of nifedipine.
    Shelke NB; Aminabhavi TM
    Int J Pharm; 2007 Dec; 345(1-2):51-8. PubMed ID: 17616283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ricinoleic acid-based biopolymers.
    Teomim D; Nyska A; Domb AJ
    J Biomed Mater Res; 1999 Jun; 45(3):258-67. PubMed ID: 10397984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(fumaric-co-sebacic anhydride). A degradation study as evaluated by FTIR, DSC, GPC and X-ray diffraction.
    Santos CA; Freedman BD; Leach KJ; Press DL; Scarpulla M; Mathiowitz E
    J Control Release; 1999 Jun; 60(1):11-22. PubMed ID: 10370167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-irradiation stability of saturated and unsaturated aliphatic polyanhydrides--ricinoleic acid based polymers.
    Teomim D; Mäder K; Bentolila A; Magora A; Domb AJ
    Biomacromolecules; 2001; 2(3):1015-22. PubMed ID: 11710004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic and efficacy study of cisplatin and paclitaxel formulated in a new injectable poly(sebacic-co-ricinoleic acid) polymer.
    Levy-Nissenbaum E; Khan W; Pawar RP; Tabakman R; Naftali E; Winkler I; Kaufman O; Klapper L; Domb AJ
    Eur J Pharm Biopharm; 2012 Sep; 82(1):85-93. PubMed ID: 22732267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.
    Pfeifer BA; Burdick JA; Little SR; Langer R
    Int J Pharm; 2005 Nov; 304(1-2):210-9. PubMed ID: 16174553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic block copolymer NPs obtained by coupling ricinoleic acid/sebacic acids and mPEG: Synthesis, characterization, and controlled release of paclitaxel.
    Zhou S; Sun W; Zhai Y
    J Biomater Sci Polym Ed; 2018 Dec; 29(18):2201-2217. PubMed ID: 30285542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable micelles/polymersomes from fumaric/sebacic acids and poly(ethylene glycol).
    Najafi F; Sarbolouki MN
    Biomaterials; 2003 Mar; 24(7):1175-82. PubMed ID: 12527258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erosion of a new family of biodegradable polyanhydrides.
    Shieh L; Tamada J; Chen I; Pang J; Domb A; Langer R
    J Biomed Mater Res; 1994 Dec; 28(12):1465-75. PubMed ID: 7876286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A library of L-tyrosine-derived biodegradable polyarylates for potential biomaterial applications, part I: synthesis, characterization and accelerated hydrolytic degradation.
    Huang X; Shen CY; Chen JC; Li Q
    J Biomater Sci Polym Ed; 2009; 20(7-8):935-55. PubMed ID: 19454161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.