BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16004424)

  • 21. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ; Tan KK; Li X; Li J
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro release of model compounds with different hydrophilicity from poly(ester-anhydride) microspheres.
    Jaszcz K
    Acta Pol Pharm; 2013; 70(6):1051-63. PubMed ID: 24383329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs.
    Fiegel J; Fu J; Hanes J
    J Control Release; 2004 May; 96(3):411-23. PubMed ID: 15120898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gentamicin extended release from an injectable polymeric implant.
    Krasko MY; Golenser J; Nyska A; Nyska M; Brin YS; Domb AJ
    J Control Release; 2007 Jan; 117(1):90-6. PubMed ID: 17150275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro bone biocompatibility of poly (anhydride-co-imides) containing pyromellitylimidoalanine.
    Attawia MA; Uhrich KE; Botchwey E; Langer R; Laurencin CT
    J Orthop Res; 1996 May; 14(3):445-54. PubMed ID: 8676258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of poly(sebacic anhydride)-indomethacin controlled release composites via supercritical carbon dioxide assisted impregnation.
    Gong K; Rehman IU; Darr JA
    Int J Pharm; 2007 Jun; 338(1-2):191-7. PubMed ID: 17398049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new injectable thermogelling material: methoxy poly(ethylene glycol)-poly(sebacic acid-D,L-lactic acid)-methoxy poly(ethylene glycol) triblock co-polymer.
    Zhai Y; Deng L; Xing J; Liu Y; Zhang Q; Dong A
    J Biomater Sci Polym Ed; 2009; 20(7-8):923-34. PubMed ID: 19454160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase behavior and miscibility in blends of poly(sebacic anhydride)/poly(ethylene glycol).
    Chan CK; Chu IM
    Biomaterials; 2002 Jun; 23(11):2353-8. PubMed ID: 12013182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers.
    Slivniak R; Domb AJ
    Biomacromolecules; 2002; 3(4):754-60. PubMed ID: 12099819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.
    Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L
    Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macrolactones and polyesters from ricinoleic acid.
    Slivniak R; Domb AJ
    Biomacromolecules; 2005; 6(3):1679-88. PubMed ID: 15877394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Spectroscopy studies on the interaction of bis(p-nitrophenyl) esters and beta-cyclodextrin].
    Li H; Hu DD; Fang Y; Liu YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):226-31. PubMed ID: 15852862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copolymers of pharmaceutical grade lactic acid and sebacic acid: drug release behavior and biocompatibility.
    Modi S; Jain JP; Domb AJ; Kumar N
    Eur J Pharm Biopharm; 2006 Nov; 64(3):277-86. PubMed ID: 16846724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyoctanediol citrate/sebacate bioelastomer films: surface morphology, chemistry and functionality.
    Djordjevic I; Choudhury NR; Dutta NK; Kumar S; Szili EJ; Steele DA
    J Biomater Sci Polym Ed; 2010; 21(2):237-51. PubMed ID: 20092687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of hydrolytically degradable copolyester biomaterials based on glycolic acid, sebacic acid and ethylene glycol.
    Simitzis J; Soulis S; Triantou D; Zoumpoulakis L; Zotali P
    J Mater Sci Mater Med; 2011 Dec; 22(12):2673-84. PubMed ID: 22057968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation.
    Leach KJ; Mathiowitz E
    Biomaterials; 1998 Nov; 19(21):1973-80. PubMed ID: 9863531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computed tomography of Lipiodol-loaded biodegradable pasty polymer for implant visualization.
    Sosna J; Havivi E; Khan W; Appelbaum L; Nyska A; Domb AJ
    Contrast Media Mol Imaging; 2014; 9(3):246-51. PubMed ID: 24700752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro release and antibacterial activity of poly (oleic/linoleic acid dimer: sebacic acid)-gentamicin.
    Yang XF; Zeng FD; Zhou ZB; Huang KX; Xu HB
    Acta Pharmacol Sin; 2003 Apr; 24(4):306-10. PubMed ID: 12676068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel copolyanhydrides combining strong inherent fluorescence and a wide range of biodegradability: synthesis, characterization and in vitro degradation.
    Jiang H; Chen D; Zhao P; Li Y; Zhu K
    Macromol Biosci; 2005 Aug; 5(8):753-9. PubMed ID: 16096992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.