These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 16004460)

  • 1. Polymersome encapsulated hemoglobin: a novel type of oxygen carrier.
    Arifin DR; Palmer AF
    Biomacromolecules; 2005; 6(4):2172-81. PubMed ID: 16004460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier.
    Rameez S; Alosta H; Palmer AF
    Bioconjug Chem; 2008 May; 19(5):1025-32. PubMed ID: 18442283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.
    Arifin DR; Palmer AF
    Biotechnol Prog; 2003; 19(6):1798-811. PubMed ID: 14656159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large scale production of vesicles by hollow fiber extrusion: a novel method for generating polymersome encapsulated hemoglobin dispersions.
    Rameez S; Bamba I; Palmer AF
    Langmuir; 2010 Apr; 26(7):5279-85. PubMed ID: 20000689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes.
    Li S; Nickels J; Palmer AF
    Biomaterials; 2005 Jun; 26(17):3759-69. PubMed ID: 15621266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Reactivity of Polymersome Encapsulated Hemoglobin with Physiologically Important Gaseous Ligands: Oxygen, Carbon Monoxide and Nitric Oxide.
    Rameez S; Banerjee U; Fontes J; Roth A; Palmer AF
    Macromolecules; 2012 Mar; 45(5):2385-2389. PubMed ID: 22865934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties and stability mechanisms of poly(ethylene glycol) conjugated liposome encapsulated hemoglobin dispersions.
    Arifin DR; Palmer AF
    Artif Cells Blood Substit Immobil Biotechnol; 2005; 33(2):137-62. PubMed ID: 15960077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of linear-dendritic diblock copolymers: from nanofibers to polymersomes.
    del Barrio J; Oriol L; Sánchez C; Serrano JL; Di Cicco A; Keller P; Li MH
    J Am Chem Soc; 2010 Mar; 132(11):3762-9. PubMed ID: 20192188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific PEGylation of hemoglobin at Cys-93(beta): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain.
    Manjula BN; Tsai A; Upadhya R; Perumalsamy K; Smith PK; Malavalli A; Vandegriff K; Winslow RM; Intaglietta M; Prabhakaran M; Friedman JM; Acharya AS
    Bioconjug Chem; 2003; 14(2):464-72. PubMed ID: 12643758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting.
    Meng F; Engbers GH; Feijen J
    J Control Release; 2005 Jan; 101(1-3):187-98. PubMed ID: 15588904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photopolymerization of bovine hemoglobin entrapped nanoscale hydrogel particles within liposomal reactors for use as an artificial blood substitute.
    Patton JN; Palmer AF
    Biomacromolecules; 2005; 6(1):414-24. PubMed ID: 15638547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homopolymer induced aggregation of poly(ethylene oxide)n-b-poly(butylene oxide)m polymersomes.
    Smart TP; Ryan AJ; Howse JR; Battaglia G
    Langmuir; 2010 May; 26(10):7425-30. PubMed ID: 19780557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for the encapsulation of biomolecules into polymersomes via direct hydration.
    O'Neil CP; Suzuki T; Demurtas D; Finka A; Hubbell JA
    Langmuir; 2009 Aug; 25(16):9025-9. PubMed ID: 19621886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A direct probe of the interplay between bilayer morphology and surface reactivity in polymersomes.
    Chang YW; Silas JA; Ugaz VM
    Langmuir; 2010 Jul; 26(14):12132-9. PubMed ID: 20578755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glutaraldehyde concentration on the physical properties of polymerized hemoglobin-based oxygen carriers.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(4):1225-32. PubMed ID: 15296452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-responsive polymersomes for programmed drug delivery.
    Meng F; Zhong Z; Feijen J
    Biomacromolecules; 2009 Feb; 10(2):197-209. PubMed ID: 19123775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.
    Zhao J; Liu CS; Yuan Y; Tao XY; Shan XQ; Sheng Y; Wu F
    Biomaterials; 2007 Mar; 28(7):1414-22. PubMed ID: 17126898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles.
    Qi W; Ghoroghchian PP; Li G; Hammer DA; Therien MJ
    Nanoscale; 2013 Nov; 5(22):10908-15. PubMed ID: 24056924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of NaBH4 concentration and reaction time on physical properties of glutaraldehyde-polymerized hemoglobin.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):946-52. PubMed ID: 15176903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.