BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16005012)

  • 1. Copper and zinc removal from aqueous solution by mixed mineral systems I. Reactivity and removal kinetics.
    Egirani DE; Baker AR; Andrews JE
    J Colloid Interface Sci; 2005 Nov; 291(2):319-25. PubMed ID: 16005012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper and zinc removal from aqueous solution by mixed mineral systems II. The role of solution composition and aging.
    Egirani DE; Baker AR; Andrews JE
    J Colloid Interface Sci; 2005 Nov; 291(2):326-33. PubMed ID: 16009366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling.
    Heidmann I; Christl I; Leu C; Kretzschmar R
    J Colloid Interface Sci; 2005 Feb; 282(2):270-82. PubMed ID: 15589531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface.
    Nachtegaal M; Sparks DL
    J Colloid Interface Sci; 2004 Aug; 276(1):13-23. PubMed ID: 15219425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite.
    Juang RS; Chung JY
    J Colloid Interface Sci; 2004 Jul; 275(1):53-60. PubMed ID: 15158380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite.
    Corami A; Mignardi S; Ferrini V
    J Hazard Mater; 2007 Jul; 146(1-2):164-70. PubMed ID: 17204364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT.
    Kang S; Xing B
    Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(II) Sorption Mechanism on Montmorillonite: An Electron Paramagnetic Resonance Study.
    Hyun SP; Cho YH; Kim SJ; Hahn PS
    J Colloid Interface Sci; 2000 Feb; 222(2):254-261. PubMed ID: 10662520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of bisphenol A, 17alpha-ethynylestradiol and estrone to mineral surfaces.
    Shareef A; Angove MJ; Wells JD; Johnson BB
    J Colloid Interface Sci; 2006 May; 297(1):62-9. PubMed ID: 16298385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation in multiple metal environments: I. Bulk-XAFS spectroscopy of model and mixed compounds.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 Apr; 320(2):383-99. PubMed ID: 18262202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.
    Xue Y; Hou H; Zhu S
    J Hazard Mater; 2009 Feb; 162(1):391-401. PubMed ID: 18579295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent.
    Prasad M; Xu HY; Saxena S
    J Hazard Mater; 2008 Jun; 154(1-3):221-9. PubMed ID: 18082944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal power plants ash as sorbent for the removal of Cu(II) and Zn(II) ions from wastewaters.
    Tofan L; Paduraru C; Bilba D; Rotariu M
    J Hazard Mater; 2008 Aug; 156(1-3):1-8. PubMed ID: 18226443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal removal from aqueous solutions by activated phosphate rock.
    Elouear Z; Bouzid J; Boujelben N; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Aug; 156(1-3):412-20. PubMed ID: 18242833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies.
    Al-Degs YS; El-Barghouthi MI; Issa AA; Khraisheh MA; Walker GM
    Water Res; 2006 Aug; 40(14):2645-58. PubMed ID: 16839582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum.
    Pérez Silva RM; Abalos Rodríguez A; Gómez Montes De Oca JM; Cantero Moreno D
    Bioresour Technol; 2009 Feb; 100(4):1533-8. PubMed ID: 18951017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.