These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16005281)

  • 1. Chromosome segregation: seeing is believing.
    Bloom K
    Curr Biol; 2005 Jul; 15(13):R500-3. PubMed ID: 16005281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDC2 phosphorylation of the fission yeast dis1 ensures accurate chromosome segregation.
    Aoki K; Nakaseko Y; Kinoshita K; Goshima G; Yanagida M
    Curr Biol; 2006 Aug; 16(16):1627-35. PubMed ID: 16920624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control.
    Lin YT; Chen Y; Wu G; Lee WH
    Oncogene; 2006 Nov; 25(52):6901-14. PubMed ID: 16732327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts.
    Kenney RD; Heald R
    J Cell Sci; 2006 Dec; 119(Pt 24):5057-66. PubMed ID: 17158911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation.
    Cheeseman IM; MacLeod I; Yates JR; Oegema K; Desai A
    Curr Biol; 2005 Apr; 15(8):771-7. PubMed ID: 15854912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of chromosome motility during mitosis.
    Gardner MK; Odde DJ
    Curr Opin Cell Biol; 2006 Dec; 18(6):639-47. PubMed ID: 17046231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment.
    Mimori-Kiyosue Y; Grigoriev I; Sasaki H; Matsui C; Akhmanova A; Tsukita S; Vorobjev I
    Genes Cells; 2006 Aug; 11(8):845-57. PubMed ID: 16866869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment.
    Raaijmakers JA; Tanenbaum ME; Maia AF; Medema RH
    J Cell Sci; 2009 Jul; 122(Pt 14):2436-45. PubMed ID: 19549680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes.
    Ma W; Baumann C; Viveiros MM
    Dev Biol; 2010 Mar; 339(2):439-50. PubMed ID: 20079731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driving chromosome segregation: lessons from the human and Drosophila centromere-kinetochore machinery.
    Orr B; Afonso O; Feijão T; Sunkel CE
    Biochem Soc Trans; 2010 Dec; 38(6):1667-75. PubMed ID: 21118145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule-associated proteins and their essential roles during mitosis.
    Maiato H; Sampaio P; Sunkel CE
    Int Rev Cytol; 2004; 241():53-153. PubMed ID: 15548419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells.
    Manning AL; Compton DA
    Curr Biol; 2007 Feb; 17(3):260-5. PubMed ID: 17276919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment.
    Emanuele MJ; Stukenberg PT
    Cell; 2007 Sep; 130(5):893-905. PubMed ID: 17803911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleophosmin is required for chromosome congression, proper mitotic spindle formation, and kinetochore-microtubule attachment in HeLa cells.
    Amin MA; Matsunaga S; Uchiyama S; Fukui K
    FEBS Lett; 2008 Nov; 582(27):3839-44. PubMed ID: 18951898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spindle: a dynamic assembly of microtubules and motors.
    Wittmann T; Hyman A; Desai A
    Nat Cell Biol; 2001 Jan; 3(1):E28-34. PubMed ID: 11146647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fission yeast DASH complex is essential for satisfying the spindle assembly checkpoint induced by defects in the inner-kinetochore proteins.
    Kobayashi Y; Saitoh S; Ogiyama Y; Soejima S; Takahashi K
    Genes Cells; 2007 Mar; 12(3):311-28. PubMed ID: 17352737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule Sliding within the Bridging Fiber Pushes Kinetochore Fibers Apart to Segregate Chromosomes.
    Vukušić K; Buđa R; Bosilj A; Milas A; Pavin N; Tolić IM
    Dev Cell; 2017 Oct; 43(1):11-23.e6. PubMed ID: 29017027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary conservation between budding yeast and human kinetochores.
    Kitagawa K; Hieter P
    Nat Rev Mol Cell Biol; 2001 Sep; 2(9):678-87. PubMed ID: 11533725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular architecture of vertebrate kinetochores.
    Takeuchi K; Fukagawa T
    Exp Cell Res; 2012 Jul; 318(12):1367-74. PubMed ID: 22391098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spindle cycle in budding yeast.
    Winey M; O'Toole ET
    Nat Cell Biol; 2001 Jan; 3(1):E23-7. PubMed ID: 11146646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.