These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16005529)

  • 1. Porphyrins and porphines bind strongly and specifically to tRNA, precursor tRNA and to M1 RNA and inhibit the ribonuclease P ribozyme reaction.
    Hori Y; Rogert MC; Tanaka T; Kikuchi Y; Bichenkova EV; Wilton AN; Gbaj A; Douglas KT
    Biochim Biophys Acta; 2005 Jul; 1730(1):47-55. PubMed ID: 16005529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic inhibitors of the processing of pretransfer RNA by the ribonuclease P ribozyme: enzyme inhibitors which act by binding to substrate.
    Hori Y; Bichenkova EV; Wilton AN; El-Attug MN; Sadat-Ebrahimi S; Tanaka T; Kikuchi Y; Araki M; Sugiura Y; Douglas KT
    Biochemistry; 2001 Jan; 40(3):603-8. PubMed ID: 11170376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis.
    Sharin E; Schein A; Mann H; Ben-Asouli Y; Jarrous N
    Nucleic Acids Res; 2005; 33(16):5120-32. PubMed ID: 16155184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking.
    Christian EL; McPheeters DS; Harris ME
    Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gel retardation analysis of E. coli M1 RNA-tRNA complexes.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    Nucleic Acids Res; 1993 Jul; 21(15):3521-7. PubMed ID: 7688454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyrins and porphines inhibit the ribonuclease P reaction in vitro.
    Hori Y; Bichenkova EV; Wilton AN; Tanaka T; Douglas KT; Kikuchi Y
    Nucleic Acids Res Suppl; 2002; (2):111-2. PubMed ID: 12903130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a region within M1 RNA of Escherichia coli RNase P important for the location of the cleavage site on a wild-type tRNA precursor.
    Kirsebom LA; Svärd SG
    J Mol Biol; 1993 Jun; 231(3):594-604. PubMed ID: 7685824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm.
    Gaur RK; Hanne A; Conrad F; Kahle D; Krupp G
    RNA; 1996 Jul; 2(7):674-81. PubMed ID: 8756410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate recognition of pre-tRNA by ribonuclease P---subsite model of natural ribozyme originated from Escherichia coli.
    Fujimoto A; Kikuchi Y; Tanaka T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):35-6. PubMed ID: 19749247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between Escherichia coli RNase P RNA and the discriminator base results in slow product release.
    Tallsjö A; Kufel J; Kirsebom LA
    RNA; 1996 Apr; 2(4):299-307. PubMed ID: 8634910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P.
    Loria A; Pan T
    Biochemistry; 1997 May; 36(21):6317-25. PubMed ID: 9174346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic study of porphyrin-caffeine interactions.
    Makarska-Bialokoz M
    J Fluoresc; 2012 Nov; 22(6):1521-30. PubMed ID: 22763925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme.
    Siew D; Zahler NH; Cassano AG; Strobel SA; Harris ME
    Biochemistry; 1999 Feb; 38(6):1873-83. PubMed ID: 10026268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate shape preference of Escherichia coli ribonuclease P ribozyme and holo enzyme using bottom-half part-shifting variants of pre-tRNA.
    Tanaka T; Nagai Y; Kikuchi Y
    Biosci Biotechnol Biochem; 2005 Oct; 69(10):1992-4. PubMed ID: 16244456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis on substrate specificity of Escherichia coli ribonuclease P using shape variants of pre-tRNA: proposal of subsites model for substrate shape recognition.
    Suwa S; Nagai Y; Fujimoto A; Kikuchi Y; Tanaka T
    J Biochem; 2009 Feb; 145(2):151-60. PubMed ID: 19008262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peculiarities of interaction of porphyrins with tRNA at low ionic strength.
    Dalyan Y; Vardanyan I; Chavushyan A; Balayan G
    J Biomol Struct Dyn; 2010 Aug; 28(1):123-31. PubMed ID: 20476800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarities between a predicted secondary structure for the M1 RNA ribozyme and the tRNA binding center of 16 S rRNA from E. coli.
    Boehm S
    FEBS Lett; 1987 Aug; 220(2):283-7. PubMed ID: 2440726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsites for substrate recognition by bacterial ribonuclease P.
    Fujimoto A; Suwa S; Nagai Y; Kikuchi Y; Tanaka T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):207-8. PubMed ID: 18776326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
    Hardt WD; Hartmann RK
    J Mol Biol; 1996 Jun; 259(3):422-33. PubMed ID: 8676378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.