These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16005535)

  • 61. Modeling the growth characteristics of Listeria monocytogenes and native microflora in smoked salmon.
    Hwang CA; Sheen S
    J Food Sci; 2009 Apr; 74(3):M125-30. PubMed ID: 19397728
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modelling the effect of the redox potential and pH of heating media on Listeria monocytogenes heat resistance.
    Ignatova M; Leguerinel I; Guilbot M; Prévost H; Guillou S
    J Appl Microbiol; 2008 Sep; 105(3):875-83. PubMed ID: 18410341
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum.
    Lahlali R; Serrhini MN; Jijakli MH
    Int J Food Microbiol; 2005 Sep; 103(3):315-22. PubMed ID: 15885834
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Growth of Listeria monocytogenes in melon, watermelon and papaya pulps.
    Penteado AL; Leitão MF
    Int J Food Microbiol; 2004 Apr; 92(1):89-94. PubMed ID: 15033271
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cardinal parameter meta-regression models describing Listeria monocytogenes growth in broth.
    Nunes Silva B; Cadavez V; Teixeira JA; Ellouze M; Gonzales-Barron U
    Food Res Int; 2020 Oct; 136():109476. PubMed ID: 32846559
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Modelling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes.
    Francois K; Devlieghere F; Smet K; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2005 Apr; 100(1-3):41-53. PubMed ID: 15854691
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of storage conditions in the response of Listeria monocytogenes in a fresh purple vegetable smoothie compared with an acidified TSB medium.
    González-Tejedor GA; Garre A; Esnoz A; Artés-Hernández F; Fernández PS
    Food Microbiol; 2018 Jun; 72():98-105. PubMed ID: 29407410
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Growth and filamentation of cold-adapted, log-phase Listeria monocytogenes exposed to salt, acid, or alkali stress at 3°C.
    Vail KM; McMullen LM; Jones TH
    J Food Prot; 2012 Dec; 75(12):2142-50. PubMed ID: 23212010
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Growth of untreated and radiation-damaged Listeria as affected by environmental factors.
    Farkas J; Andrássy E; Mészáros L; Bánáti D
    Acta Microbiol Immunol Hung; 1995; 42(1):19-28. PubMed ID: 7620808
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Towards lag phase of microbial populations at growth-limiting conditions: The role of the variability in the growth limits of individual cells.
    Aguirre JS; Koutsoumanis KP
    Int J Food Microbiol; 2016 May; 224():1-6. PubMed ID: 26900994
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Methods to determine the growth domain in a multidimensional environmental space.
    Le Marc Y; Pin C; Baranyi J
    Int J Food Microbiol; 2005 Apr; 100(1-3):3-12. PubMed ID: 15854687
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bi-phasic growth of Listeria monocytogenes in chemically defined medium at low temperatures.
    Tyrovouzis NA; Angelidis AS; Stoforos NG
    Int J Food Microbiol; 2014 Sep; 186():110-9. PubMed ID: 25016210
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Model for the combined effects of temperature, pH and sodium chloride concentration on survival of Shigella flexneri strain 5348 under aerobic conditions.
    Zaika LL; Phillips JG
    Int J Food Microbiol; 2005 May; 101(2):179-87. PubMed ID: 15862880
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Use of survival analysis and Classification and Regression Trees to model the growth/no growth boundary of spoilage yeasts as affected by alcohol, pH, sucrose, sorbate and temperature.
    Evans DG; Everis LK; Betts GD
    Int J Food Microbiol; 2004 Apr; 92(1):55-67. PubMed ID: 15033268
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microbial shelf life of coconut water subjected to various inoculation levels of Listeria monocytogenes and storage conditions.
    Aba RPM; Gelido EML; Yatco KMRS; Gabriel AA
    Int J Food Microbiol; 2021 Apr; 344():109108. PubMed ID: 33667851
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The aerobic growth of Aeromonas hydrophila and Listeria monocytogenes in broths and on pork.
    Gill CO; Greer GG; Dilts BD
    Int J Food Microbiol; 1997 Mar; 35(1):67-74. PubMed ID: 9081227
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling the boundaries of growth of Salmonella Typhimurium in broth as a function of temperature, water activity, and pH.
    Koutsoumanis KP; Kendall PA; Sofos JN
    J Food Prot; 2004 Jan; 67(1):53-9. PubMed ID: 14717351
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Significance of pre-incubation temperature and inoculum concentration on subsequent growth of Listeria monocytogenes at 14 degrees C.
    Gay M; Cerf O; Davey KR
    J Appl Bacteriol; 1996 Oct; 81(4):433-8. PubMed ID: 8896354
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Predictive modelling of growth and measurement of enzymatic synthesis and activity by a cocktail of Brochothrix thermosphacta.
    Braun P; Sutherland JP
    Int J Food Microbiol; 2004 Sep; 95(2):169-75. PubMed ID: 15282129
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparing predicting models for heat inactivation of Listeria monocytogenes and Pseudomonas aeruginosa at different pH.
    Hassani M; Alvarez I; Raso J; Condón S; Pagán R
    Int J Food Microbiol; 2005 Apr; 100(1-3):213-22. PubMed ID: 15854706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.