BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16005567)

  • 21. Stress-induced hyperphosphorylation of tau in the mouse brain.
    Okawa Y; Ishiguro K; Fujita SC
    FEBS Lett; 2003 Jan; 535(1-3):183-9. PubMed ID: 12560101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonprincipal neurons and CA2 pyramidal cells, but not mossy cells are immunoreactive for calcitonin gene-related peptide in the mouse hippocampus.
    Sakurai O; Kosaka T
    Brain Res; 2007 Dec; 1186():129-43. PubMed ID: 18005945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alteration of CREB phosphorylation and spatial memory deficits in aged 129T2/Sv mice.
    Porte Y; Buhot MC; Mons N
    Neurobiol Aging; 2008 Oct; 29(10):1533-46. PubMed ID: 17478013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progression of hippocampal degeneration in amyotrophic lateral sclerosis with or without memory impairment: distinction from Alzheimer disease.
    Takeda T; Uchihara T; Arai N; Mizutani T; Iwata M
    Acta Neuropathol; 2009 Jan; 117(1):35-44. PubMed ID: 19002475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calretinin expression in hilar mossy cells of the hippocampal dentate gyrus of nonhuman primates and humans.
    Seress L; Abrahám H; Czéh B; Fuchs E; Léránth C
    Hippocampus; 2008; 18(4):425-34. PubMed ID: 18189312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons - implications for Alzheimer's disease.
    Härtig W; Stieler J; Boerema AS; Wolf J; Schmidt U; Weissfuss J; Bullmann T; Strijkstra AM; Arendt T
    Eur J Neurosci; 2007 Jan; 25(1):69-80. PubMed ID: 17241268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies.
    Leem YH; Lim HJ; Shim SB; Cho JY; Kim BS; Han PL
    J Neurosci Res; 2009 Aug; 87(11):2561-70. PubMed ID: 19360903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression changes of growth-associated protein-43 (GAP-43) and mitogen-activated protein kinase phosphatase-1 (MKP-1) and in hippocampus of streptozotocin-induced diabetic cognitive impairment rats.
    Zhou J; Wang L; Ling S; Zhang X
    Exp Neurol; 2007 Aug; 206(2):201-8. PubMed ID: 17601561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperphosphorylation of tau and protein phosphatases in Alzheimer disease.
    Liu F; Liang Z; Gong CX
    Panminerva Med; 2006 Jun; 48(2):97-108. PubMed ID: 16953147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.
    Li Y; Ji YJ; Jiang H; Liu DX; Zhang Q; Fan SJ; Pan F
    Chin Med J (Engl); 2009 Jul; 122(13):1564-9. PubMed ID: 19719949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptic vesicle dynamics in the mossy fiber-CA3 presynaptic terminals of mouse hippocampus.
    Suyama S; Hikima T; Sakagami H; Ishizuka T; Yawo H
    Neurosci Res; 2007 Dec; 59(4):481-90. PubMed ID: 17933408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of melatonin on synaptic transmission and long-term potentiation in two areas of mouse hippocampus.
    Ozcan M; Yilmaz B; Carpenter DO
    Brain Res; 2006 Sep; 1111(1):90-4. PubMed ID: 16919244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divergent phosphorylation pattern of tau in P301L tau transgenic mice.
    Deters N; Ittner LM; Götz J
    Eur J Neurosci; 2008 Jul; 28(1):137-47. PubMed ID: 18662339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A.
    Zhou XW; Gustafsson JA; Tanila H; Bjorkdahl C; Liu R; Winblad B; Pei JJ
    Neurobiol Dis; 2008 Sep; 31(3):386-94. PubMed ID: 18586097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics.
    Rosenmann H; Grigoriadis N; Eldar-Levy H; Avital A; Rozenstein L; Touloumi O; Behar L; Ben-Hur T; Avraham Y; Berry E; Segal M; Ginzburg I; Abramsky O
    Exp Neurol; 2008 Jul; 212(1):71-84. PubMed ID: 18490011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subregion-specific vulnerability to endoplasmic reticulum stress-induced neurotoxicity in rat hippocampal neurons.
    Kosuge Y; Imai T; Kawaguchi M; Kihara T; Ishige K; Ito Y
    Neurochem Int; 2008 May; 52(6):1204-11. PubMed ID: 18280615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Notch-1 immunoexpression is increased in Alzheimer's and Pick's disease.
    Nagarsheth MH; Viehman A; Lippa SM; Lippa CF
    J Neurol Sci; 2006 May; 244(1-2):111-6. PubMed ID: 16473372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BAG-1M is up-regulated in hippocampus of Alzheimer's disease patients and associates with tau and APP proteins.
    Elliott E; Laufer O; Ginzburg I
    J Neurochem; 2009 May; 109(4):1168-78. PubMed ID: 19317853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity.
    Tu B; Jiao Y; Herzog H; Nadler JV
    Neuroscience; 2006 Dec; 143(4):1085-94. PubMed ID: 17027162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relation of hippocampal phospho-SAPK/JNK granules in Alzheimer's disease and tauopathies to granulovacuolar degeneration bodies.
    Lagalwar S; Berry RW; Binder LI
    Acta Neuropathol; 2007 Jan; 113(1):63-73. PubMed ID: 17089132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.