These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 16005619)
1. Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by peyer's patches in mice. Shakweh M; Besnard M; Nicolas V; Fattal E Eur J Pharm Biopharm; 2005 Sep; 61(1-2):1-13. PubMed ID: 16005619 [TBL] [Abstract][Full Text] [Related]
2. Particle uptake by Peyer's patches: a pathway for drug and vaccine delivery. Shakweh M; Ponchel G; Fattal E Expert Opin Drug Deliv; 2004 Nov; 1(1):141-63. PubMed ID: 16296726 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of Japanese encephalitis virus vaccine loaded poly(L-lactide-co-glycolide) microspheres for oral immunization. Khang G; Cho JC; Lee JW; Rhee JM; Lee HB Biomed Mater Eng; 1999; 9(1):49-59. PubMed ID: 10436853 [TBL] [Abstract][Full Text] [Related]
4. Uptake studies in rat Peyer's patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. Borges O; Cordeiro-da-Silva A; Romeijn SG; Amidi M; de Sousa A; Borchard G; Junginger HE J Control Release; 2006 Sep; 114(3):348-58. PubMed ID: 16905219 [TBL] [Abstract][Full Text] [Related]
5. Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. Oster CG; Kim N; Grode L; Barbu-Tudoran L; Schaper AK; Kaufmann SH; Kissel T J Control Release; 2005 May; 104(2):359-77. PubMed ID: 15907586 [TBL] [Abstract][Full Text] [Related]
6. Comparison of poly(DL-lactide-co-glycolide) and polystyrene microsphere targeting to intestinal M cells. Jepson MA; Simmons NL; O'Hagan DT; Hirst BH J Drug Target; 1993; 1(3):245-9. PubMed ID: 8069566 [TBL] [Abstract][Full Text] [Related]
7. Starch microparticles as a vaccine adjuvant: only uptake in Peyer's patches decides the profile of the immune response. Stertman L; Lundgren E; Sjöholm I Vaccine; 2006 Apr; 24(17):3661-8. PubMed ID: 16513226 [TBL] [Abstract][Full Text] [Related]
8. Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer's patches. van der Lubben IM; Verhoef JC; van Aelst AC; Borchard G; Junginger HE Biomaterials; 2001 Apr; 22(7):687-94. PubMed ID: 11246962 [TBL] [Abstract][Full Text] [Related]
9. Spray-dried microparticles: a potential vehicle for oral delivery of vaccines. Chablani L; Tawde SA; D'Souza MJ J Microencapsul; 2012; 29(4):388-97. PubMed ID: 22283700 [TBL] [Abstract][Full Text] [Related]
10. A one-step process in preparation of cationic nanoparticles with poly(lactide-co-glycolide)-containing polyethylenimine gives efficient gene delivery. Shau MD; Shih MF; Lin CC; Chuang IC; Hung WC; Hennink WE; Cherng JY Eur J Pharm Sci; 2012 Aug; 46(5):522-9. PubMed ID: 22522118 [TBL] [Abstract][Full Text] [Related]
11. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Coppi G; Iannuccelli V Int J Pharm; 2009 Feb; 367(1-2):127-32. PubMed ID: 18940240 [TBL] [Abstract][Full Text] [Related]
12. In vivo uptake of chitosan microparticles by murine Peyer's patches: visualization studies using confocal laser scanning microscopy and immunohistochemistry. Van Der Lubben IM; Konings FA; Borchard G; Verhoef JC; Junginger HE J Drug Target; 2001; 9(1):39-47. PubMed ID: 11378522 [TBL] [Abstract][Full Text] [Related]
13. Uptake of inert microparticles in normal and immune deficient mice. Smyth SH; Feldhaus S; Schumacher U; Carr KE Int J Pharm; 2008 Jan; 346(1-2):109-18. PubMed ID: 17723283 [TBL] [Abstract][Full Text] [Related]
14. Rapid insorption of small particles in the gut. Sass W; Dreyer HP; Seifert J Am J Gastroenterol; 1990 Mar; 85(3):255-60. PubMed ID: 2309677 [TBL] [Abstract][Full Text] [Related]
15. Nano-encapsulation of protein using an enteric polymer as carrier. Dupeyrón D; González M; Sáez V; Ramón J; Rieumont J IEE Proc Nanobiotechnol; 2005 Oct; 152(5):165-8. PubMed ID: 16441175 [TBL] [Abstract][Full Text] [Related]
16. Toll-like receptor 2 is critical for induction of Reg3 beta expression and intestinal clearance of Yersinia pseudotuberculosis. Dessein R; Gironella M; Vignal C; Peyrin-Biroulet L; Sokol H; Secher T; Lacas-Gervais S; Gratadoux JJ; Lafont F; Dagorn JC; Ryffel B; Akira S; Langella P; Nùñez G; Sirard JC; Iovanna J; Simonet M; Chamaillard M Gut; 2009 Jun; 58(6):771-6. PubMed ID: 19174417 [TBL] [Abstract][Full Text] [Related]
17. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles. Packhaeuser CB; Kissel T J Control Release; 2007 Nov; 123(2):131-40. PubMed ID: 17854938 [TBL] [Abstract][Full Text] [Related]
18. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour. Unger F; Wittmar M; Morell F; Kissel T Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641 [TBL] [Abstract][Full Text] [Related]
19. The intestinal uptake of particles and the implications for drug and antigen delivery. O'Hagan DT J Anat; 1996 Dec; 189 ( Pt 3)(Pt 3):477-82. PubMed ID: 8982819 [TBL] [Abstract][Full Text] [Related]
20. Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Katas H; Cevher E; Alpar HO Int J Pharm; 2009 Mar; 369(1-2):144-54. PubMed ID: 19010405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]