These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 16005845)
1. Ubiquinol oxidation in the cytochrome bc1 complex: reaction mechanism and prevention of short-circuiting. Mulkidjanian AY Biochim Biophys Acta; 2005 Aug; 1709(1):5-34. PubMed ID: 16005845 [TBL] [Abstract][Full Text] [Related]
2. Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle. Mulkidjanian AY Photochem Photobiol Sci; 2007 Jan; 6(1):19-34. PubMed ID: 17200733 [TBL] [Abstract][Full Text] [Related]
3. Design and use of photoactive ruthenium complexes to study electron transfer within cytochrome bc1 and from cytochrome bc1 to cytochrome c. Millett F; Havens J; Rajagukguk S; Durham B Biochim Biophys Acta; 2013; 1827(11-12):1309-19. PubMed ID: 22985600 [TBL] [Abstract][Full Text] [Related]
4. Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation-reduction status on the Rieske iron-sulfur protein in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans. Meinhardt SW; Yang XH; Trumpower BL; Ohnishi T J Biol Chem; 1987 Jun; 262(18):8702-6. PubMed ID: 3036822 [TBL] [Abstract][Full Text] [Related]
5. The rate-limiting step in the cytochrome bc1 complex (Ubiquinol-Cytochrome c Oxidoreductase) is not changed by inhibition of cytochrome b-dependent deprotonation: implications for the mechanism of ubiquinol oxidation at center P of the bc1 complex. Covian R; Trumpower BL J Biol Chem; 2009 May; 284(21):14359-67. PubMed ID: 19325183 [TBL] [Abstract][Full Text] [Related]
6. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation. Robertson DE; Davidson E; Prince RC; van den Berg WH; Marrs BL; Dutton PL J Biol Chem; 1986 Jan; 261(2):584-91. PubMed ID: 3001072 [TBL] [Abstract][Full Text] [Related]
7. Changes to the length of the flexible linker region of the Rieske protein impair the interaction of ubiquinol with the cytochrome bc1 complex. Nett JH; Hunte C; Trumpower BL Eur J Biochem; 2000 Sep; 267(18):5777-82. PubMed ID: 10971589 [TBL] [Abstract][Full Text] [Related]
8. Mechanism on two-electron oxidation of ubiquinol at the Qp site in cytochrome bc1 complex: B3LYP study with broken symmetry. Shimizu M; Katsuda N; Katsurada T; Mitani M; Yoshioka Y J Phys Chem B; 2008 Nov; 112(47):15116-26. PubMed ID: 18973379 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex. Snyder CH; Gutierrez-Cirlos EB; Trumpower BL J Biol Chem; 2000 May; 275(18):13535-41. PubMed ID: 10788468 [TBL] [Abstract][Full Text] [Related]
10. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q Francia F; Malferrari M; Lanciano P; Steimle S; Daldal F; Venturoli G Biochim Biophys Acta; 2016 Nov; 1857(11):1796-1806. PubMed ID: 27550309 [TBL] [Abstract][Full Text] [Related]
11. Primary steps in the energy conversion reaction of the cytochrome bc1 complex Qo site. Sharp RE; Moser CC; Gibney BR; Dutton PL J Bioenerg Biomembr; 1999 Jun; 31(3):225-33. PubMed ID: 10591528 [TBL] [Abstract][Full Text] [Related]
12. Role of the Rieske iron-sulfur protein midpoint potential in the protonmotive Q-cycle mechanism of the cytochrome bc1 complex. Snyder CH; Merbitz-Zahradnik T; Link TA; Trumpower BL J Bioenerg Biomembr; 1999 Jun; 31(3):235-42. PubMed ID: 10591529 [TBL] [Abstract][Full Text] [Related]
13. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex. Barz WP; Verméglio A; Francia F; Venturoli G; Melandri BA; Oesterhelt D Biochemistry; 1995 Nov; 34(46):15248-58. PubMed ID: 7578140 [TBL] [Abstract][Full Text] [Related]
14. Reaction intermediates of quinol oxidation in a photoactivatable system that mimics electron transfer in the cytochrome bc1 complex. Cape JL; Bowman MK; Kramer DM J Am Chem Soc; 2005 Mar; 127(12):4208-15. PubMed ID: 15783202 [TBL] [Abstract][Full Text] [Related]
15. Elimination of the disulfide bridge in the Rieske iron-sulfur protein allows assembly of the [2Fe-2S] cluster into the Rieske protein but damages the ubiquinol oxidation site in the cytochrome bc1 complex. Merbitz-Zahradnik T; Zwicker K; Nett JH; Link TA; Trumpower BL Biochemistry; 2003 Nov; 42(46):13637-45. PubMed ID: 14622010 [TBL] [Abstract][Full Text] [Related]
16. Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex. Barragan AM; Crofts AR; Schulten K; Solov'yov IA J Phys Chem B; 2015 Jan; 119(2):433-47. PubMed ID: 25372183 [TBL] [Abstract][Full Text] [Related]
17. Generation of semiquinone-[2Fe-2S] Sarewicz M; Bujnowicz Ł; Osyczka A Biochim Biophys Acta Bioenerg; 2018 Feb; 1859(2):145-153. PubMed ID: 29180241 [TBL] [Abstract][Full Text] [Related]
18. Nonoxidizable ubiquinol derivatives that are suitable for the study of the ubiquinol oxidation site in the cytochrome bc1 complex. Zhang L; Li Z; Quinn B; Yu L; Yu CA Biochim Biophys Acta; 2002 Dec; 1556(2-3):226-32. PubMed ID: 12460680 [TBL] [Abstract][Full Text] [Related]
19. Control of ubiquinol oxidation at center P (Qo) of the cytochrome bc1 complex. Brandt U J Bioenerg Biomembr; 1999 Jun; 31(3):243-50. PubMed ID: 10591530 [TBL] [Abstract][Full Text] [Related]
20. Functional flexibility of electron flow between quinol oxidation Q Borek A; Ekiert R; Osyczka A Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]