BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16005861)

  • 1. Protein S-nitrosation: biochemistry and characterization of protein thiol-NO interactions as cellular signals.
    Miersch S; Mutus B
    Clin Biochem; 2005 Sep; 38(9):777-91. PubMed ID: 16005861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of reduced thiol groups by superoxide-mediated denitrosation of nitrosothiols.
    Schildknecht S; von Kriegsheim A; Vujacic-Mirski K; Di Lisa F; Ullrich V; Daiber A
    Redox Biol; 2022 Oct; 56():102439. PubMed ID: 35995009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for profiling native S-nitrosylation.
    Majmudar JD; Martin BR
    Biopolymers; 2014 Feb; 101(2):173-9. PubMed ID: 23828013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo.
    Bryan NS; Rassaf T; Maloney RE; Rodriguez CM; Saijo F; Rodriguez JR; Feelisch M
    Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4308-13. PubMed ID: 15014175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological nitric oxide signalling: chemistry and terminology.
    Heinrich TA; da Silva RS; Miranda KM; Switzer CH; Wink DA; Fukuto JM
    Br J Pharmacol; 2013 Aug; 169(7):1417-29. PubMed ID: 23617570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrosation, thiols, and hemoglobin: energetics and kinetics.
    Koppenol WH
    Inorg Chem; 2012 May; 51(10):5637-41. PubMed ID: 22554003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease.
    Lipton SA
    Free Radic Biol Med; 2022 Nov; 193(Pt 1):171-176. PubMed ID: 36243209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential.
    Dent MR; DeMartino AW
    Br J Pharmacol; 2023 Oct; ():. PubMed ID: 37908126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Chemical Tools for Profiling Post-Translational Modifications.
    Emenike B; Nwajiobi O; Raj M
    Front Chem; 2022; 10():868773. PubMed ID: 35860626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease.
    Morgan ET; Skubic C; Lee CM; Cokan KB; Rozman D
    Drug Metab Rev; 2020 Nov; 52(4):455-471. PubMed ID: 32898444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives.
    Ghosh A; Stuehr DJ
    Antioxid Redox Signal; 2017 Feb; 26(4):182-190. PubMed ID: 26983679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations.
    Kolesnik B; Heine CL; Schmidt R; Schmidt K; Mayer B; Gorren AC
    Free Radic Biol Med; 2014 Nov; 76():286-98. PubMed ID: 25236749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of S-phenylsulfonylcysteine residues to mixed disulfides at pH 4.0: utility in protein thiol blocking and in protein-S-nitrosothiol detection.
    Reeves BD; Joshi N; Campanello GC; Hilmer JK; Chetia L; Vance JA; Reinschmidt JN; Miller CG; Giedroc DP; Dratz EA; Singel DJ; Grieco PA
    Org Biomol Chem; 2014 Oct; 12(40):7942-56. PubMed ID: 24986430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient nitrosation of glutathione by nitric oxide.
    Kolesnik B; Palten K; Schrammel A; Stessel H; Schmidt K; Mayer B; Gorren AC
    Free Radic Biol Med; 2013 Oct; 63():51-64. PubMed ID: 23660531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-Nitrosylation - another biological switch like phosphorylation?
    Abat JK; Saigal P; Deswal R
    Physiol Mol Biol Plants; 2008 Apr; 14(1-2):119-30. PubMed ID: 23572879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide.
    Fernhoff NB; Derbyshire ER; Underbakke ES; Marletta MA
    J Biol Chem; 2012 Dec; 287(51):43053-62. PubMed ID: 23093402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-dependent CYP2B degradation is potentiated by a cytokine-regulated pathway and utilizes the immunoproteasome subunit LMP2.
    Sun H; Lee CM; Tripathi S; Kim KB; Morgan ET
    Biochem J; 2012 Aug; 445(3):377-82. PubMed ID: 22612225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of nitric oxide synthases, dietary nitrite/nitrate, and other sources to the formation of NO signaling products.
    Milsom AB; Fernandez BO; Garcia-Saura MF; Rodriguez J; Feelisch M
    Antioxid Redox Signal; 2012 Aug; 17(3):422-32. PubMed ID: 22133018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-glutathionylation of cysteine 99 in the APE1 protein impairs abasic endonuclease activity.
    Kim YJ; Kim D; Illuzzi JL; Delaplane S; Su D; Bernier M; Gross ML; Georgiadis MM; Wilson DM
    J Mol Biol; 2011 Dec; 414(3):313-26. PubMed ID: 22024594
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.