BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 16006135)

  • 21. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites.
    Liot G; Zala D; Pla P; Mottet G; Piel M; Saudou F
    J Neurosci; 2013 Apr; 33(15):6298-309. PubMed ID: 23575829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CA150 expression delays striatal cell death in overexpression and knock-in conditions for mutant huntingtin neurotoxicity.
    Arango M; Holbert S; Zala D; Brouillet E; Pearson J; Régulier E; Thakur AK; Aebischer P; Wetzel R; Déglon N; Néri C
    J Neurosci; 2006 Apr; 26(17):4649-59. PubMed ID: 16641246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease.
    Martín-Aparicio E; Yamamoto A; Hernández F; Hen R; Avila J; Lucas JJ
    J Neurosci; 2001 Nov; 21(22):8772-81. PubMed ID: 11698589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons.
    Kraft AD; Kaltenbach LS; Lo DC; Harry GJ
    Neurobiol Aging; 2012 Mar; 33(3):621.e17-33. PubMed ID: 21482444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant Adeno Associated Viral (AAV) vector type 9 delivery of Ex1-Q138-mutant huntingtin in the rat striatum as a short-time model for in vivo studies in drug discovery.
    Ceccarelli I; Fiengo P; Remelli R; Miragliotta V; Rossini L; Biotti I; Cappelli A; Petricca L; La Rosa S; Caricasole A; Pollio G; Scali C
    Neurobiol Dis; 2016 Feb; 86():41-51. PubMed ID: 26626080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective degeneration in YAC mouse models of Huntington disease.
    Van Raamsdonk JM; Warby SC; Hayden MR
    Brain Res Bull; 2007 Apr; 72(2-3):124-31. PubMed ID: 17352936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration.
    Cui L; Jeong H; Borovecki F; Parkhurst CN; Tanese N; Krainc D
    Cell; 2006 Oct; 127(1):59-69. PubMed ID: 17018277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease.
    Canals JM; Pineda JR; Torres-Peraza JF; Bosch M; Martín-Ibañez R; Muñoz MT; Mengod G; Ernfors P; Alberch J
    J Neurosci; 2004 Sep; 24(35):7727-39. PubMed ID: 15342740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Omi / HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease.
    Inagaki R; Tagawa K; Qi ML; Enokido Y; Ito H; Tamura T; Shimizu S; Oyanagi K; Arai N; Kanazawa I; Wanker EE; Okazawa H
    Eur J Neurosci; 2008 Jul; 28(1):30-40. PubMed ID: 18662332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease.
    Zuccato C; Ciammola A; Rigamonti D; Leavitt BR; Goffredo D; Conti L; MacDonald ME; Friedlander RM; Silani V; Hayden MR; Timmusk T; Sipione S; Cattaneo E
    Science; 2001 Jul; 293(5529):493-8. PubMed ID: 11408619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The selective vulnerability of nerve cells in Huntington's disease.
    Sieradzan KA; Mann DM
    Neuropathol Appl Neurobiol; 2001 Feb; 27(1):1-21. PubMed ID: 11298997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.
    Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS
    J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions.
    Saudou F; Finkbeiner S; Devys D; Greenberg ME
    Cell; 1998 Oct; 95(1):55-66. PubMed ID: 9778247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct aggregation and cell death patterns among different types of primary neurons induced by mutant huntingtin protein.
    Tagawa K; Hoshino M; Okuda T; Ueda H; Hayashi H; Engemann S; Okado H; Ichikawa M; Wanker EE; Okazawa H
    J Neurochem; 2004 May; 89(4):974-87. PubMed ID: 15140196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease.
    Valencia A; Reeves PB; Sapp E; Li X; Alexander J; Kegel KB; Chase K; Aronin N; DiFiglia M
    J Neurosci Res; 2010 Jan; 88(1):179-90. PubMed ID: 19642201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice.
    Menalled LB; Sison JD; Wu Y; Olivieri M; Li XJ; Li H; Zeitlin S; Chesselet MF
    J Neurosci; 2002 Sep; 22(18):8266-76. PubMed ID: 12223581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice.
    Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A
    Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin.
    Tanaka Y; Igarashi S; Nakamura M; Gafni J; Torcassi C; Schilling G; Crippen D; Wood JD; Sawa A; Jenkins NA; Copeland NG; Borchelt DR; Ross CA; Ellerby LM
    Neurobiol Dis; 2006 Feb; 21(2):381-91. PubMed ID: 16150600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease.
    Brustovetsky N; LaFrance R; Purl KJ; Brustovetsky T; Keene CD; Low WC; Dubinsky JM
    J Neurochem; 2005 Jun; 93(6):1361-70. PubMed ID: 15935052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes.
    Tagawa K; Marubuchi S; Qi ML; Enokido Y; Tamura T; Inagaki R; Murata M; Kanazawa I; Wanker EE; Okazawa H
    J Neurosci; 2007 Jan; 27(4):868-80. PubMed ID: 17251428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.