These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16006329)

  • 1. Electric organ discharge patterns during group hunting by a mormyrid fish.
    Arnegard ME; Carlson BA
    Proc Biol Sci; 2005 Jul; 272(1570):1305-14. PubMed ID: 16006329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric signal synchronization as a behavioural strategy to generate social attention in small groups of mormyrid weakly electric fish and a mobile fish robot.
    Worm M; Landgraf T; von der Emde G
    Biol Cybern; 2021 Dec; 115(6):599-613. PubMed ID: 34398266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes.
    Arnegard ME; Jackson BS; Hopkins CD
    J Exp Biol; 2006 Jun; 209(Pt 11):2182-98. PubMed ID: 16709920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa.
    Lavoué S; Arnegard ME; Sullivan JP; Hopkins CD
    J Physiol Paris; 2008; 102(4-6):322-39. PubMed ID: 18992333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish.
    Worm M; Landgraf T; Prume J; Nguyen H; Kirschbaum F; von der Emde G
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6852-6857. PubMed ID: 29891707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius.
    Carlson BA
    J Neurosci; 2003 Nov; 23(31):10128-36. PubMed ID: 14602829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae.
    Picq S; Sperling J; Cheng CJ; Carlson BA; Gallant JR
    Evolution; 2020 May; 74(5):911-935. PubMed ID: 32187650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips.
    Zakon H; Oestreich J; Tallarovic S; Triefenbach F
    J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry.
    Arnegard ME; Bogdanowicz SM; Hopkins CD
    Evolution; 2005 Feb; 59(2):324-43. PubMed ID: 15807419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal modulation of communication signals in electric fish.
    Zakon HH
    Dev Neurosci; 1996; 18(1-2):115-23. PubMed ID: 8840090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish.
    Gallant JR; Arnegard ME; Sullivan JP; Carlson BA; Hopkins CD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):799-817. PubMed ID: 21505877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish.
    Carlson BA; Hopkins CD; Thomas P
    Horm Behav; 2000 Nov; 38(3):177-86. PubMed ID: 11038292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes.
    Nagel R; Kirschbaum F; Tiedemann R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Mar; 203(3):183-195. PubMed ID: 28233058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes.
    Carlson BA; Gallant JR
    J Neurogenet; 2013 Sep; 27(3):106-29. PubMed ID: 23802152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex recognition by electric cues in a sound-producing mormyrid fish, Pollimyrus isidori.
    Crawford JD
    Brain Behav Evol; 1991; 38(1):20-38. PubMed ID: 1933253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of social interaction on the electric organ discharge in a mormyrid fish, Gnathonemus petersii (Mormyridae, Teleostei).
    Terleph TA; Moller P
    J Exp Biol; 2003 Jul; 206(Pt 14):2355-62. PubMed ID: 12796452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication signals and sound production mechanisms of mormyrid electric fish.
    Crawford JD; Huang X
    J Exp Biol; 1999 May; 202(Pt 10):1417-26. PubMed ID: 10210682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.