These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1600656)

  • 1. The strain distribution in the upper tibia after insertion of two different unicompartmental prostheses.
    Ivarsson I; Gillquist J
    Clin Orthop Relat Res; 1992 Jun; (279):194-200. PubMed ID: 1600656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mobile-bearing knee prosthesis can reduce strain at the proximal tibia.
    Bottlang M; Erne OK; Lacatusu E; Sommers MB; Kessler O
    Clin Orthop Relat Res; 2006 Jun; 447():105-11. PubMed ID: 16456313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of femoral component size on proximal tibial strain with anatomic graduated components total knee arthroplasty.
    Berend ME; Small SR; Ritter MA; Buckley CA; Merk JC; Dierking WK
    J Arthroplasty; 2010 Jan; 25(1):58-63. PubMed ID: 19097851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain shielding in proximal tibia of stemmed knee prosthesis: experimental study.
    Completo A; Fonseca F; Simões JA
    J Biomech; 2008; 41(3):560-6. PubMed ID: 18036530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of tibial component intramedullary stems and implant-cortex contact on the strain distribution of the proximal tibia following total knee arthroplasty. An in vitro study.
    Bourne RB; Finlay JB
    Clin Orthop Relat Res; 1986 Jul; (208):95-9. PubMed ID: 3720148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress analysis of the anterior tibial post in posterior stabilized knee prostheses.
    Huang CH; Liau JJ; Huang CH; Cheng CK
    J Orthop Res; 2007 Apr; 25(4):442-9. PubMed ID: 17205566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibial component fixation in deficient tibial bone stock.
    Brooks PJ; Walker PS; Scott RD
    Clin Orthop Relat Res; 1984 Apr; (184):302-8. PubMed ID: 6705360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of femoral component position on the kinematics of total knee arthroplasty.
    Rhoads DD; Noble PC; Reuben JD; Tullos HS
    Clin Orthop Relat Res; 1993 Jan; (286):122-9. PubMed ID: 8425333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting the impingement angle of fixed- and mobile-bearing total knee replacements: a laboratory study.
    Walker PS; Yildirim G; Sussman-Fort J; Roth J; White B; Klein GR
    J Arthroplasty; 2007 Aug; 22(5):745-52. PubMed ID: 17689786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration.
    Nagamine R; Whiteside LA; White SE; McCarthy DS
    Clin Orthop Relat Res; 1994 Jul; (304):262-71. PubMed ID: 8020227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems.
    Decking R; Puhl W; Simon U; Claes LE
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):495-501. PubMed ID: 16457913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro strain distribution in the proximal tibia. Effect of varus-valgus loading in the normal and osteoarthritic knee.
    Bourne RB; Finlay JB; Papadopoulos P; Rorabeck CH; Andreae P
    Clin Orthop Relat Res; 1984 Sep; (188):285-92. PubMed ID: 6467722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Load-bearing capacity of the tibial component of the total condylar knee prosthesis. An in vitro study.
    Figgie HE; Davy DT; Heiple KG; Hart RT
    Clin Orthop Relat Res; 1984 Mar; (183):288-97. PubMed ID: 6697597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanical loading and biomechanical problems of total joint surface replacement of the tibial plateau].
    Jansson V
    Z Orthop Ihre Grenzgeb; 1990; 128(6):606-11. PubMed ID: 2149240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parametric analysis of fixation post shape in tibial knee prostheses.
    Au AG; Liggins AB; Raso VJ; Amirfazli A
    Med Eng Phys; 2005 Mar; 27(2):123-34. PubMed ID: 15642508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tibial components on load transfer in the upper tibia.
    Reilly D; Walker PS; Ben-Dov M; Ewald FC
    Clin Orthop Relat Res; 1982 May; (165):273-82. PubMed ID: 7075071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of dislocation of the domed Oxford Lateral Unicompartmental Knee Replacement.
    Weston-Simons JS; Kendrick BJ; Mentink MJ; Pandit H; Gill HS; Murray DW
    Knee; 2014 Jan; 21(1):304-9. PubMed ID: 23673196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive bone remodelling of all polyethylene unicompartmental tibial bearings.
    Gillies RM; Hogg MC; Kohan L; Cordingley RL
    ANZ J Surg; 2007; 77(1-2):69-72. PubMed ID: 17295825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.