These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 16007095)

  • 41. An overview of salt absorption by the nephron.
    Andreoli TE
    J Nephrol; 1999; 12 Suppl 2():S3-15. PubMed ID: 10688398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Releasing the pressure.
    Davenport RJ
    Sci Aging Knowledge Environ; 2005 Jun; 2005(25):nf47. PubMed ID: 15975897
    [No Abstract]   [Full Text] [Related]  

  • 43. Scnn1 sodium channel gene family in genetically engineered mice.
    Hummler E; Beermann F
    J Am Soc Nephrol; 2000 Nov; 11 Suppl 16():S129-34. PubMed ID: 11065344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amiloride lowers arterial pressure in cyp1a1ren-2 transgenic rats without affecting renal vascular function.
    Schlüter T; Rohsius R; Wanka H; Schmid C; Siepelmeyer A; Rettig R; Peters J; Grisk O
    J Hypertens; 2010 Nov; 28(11):2267-77. PubMed ID: 20683339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Review article: importance of the kidney proximal tubular cells in thiazolidinedione-mediated sodium and water uptake.
    Panchapakesan U; Pollock C; Saad S
    Nephrology (Carlton); 2009 Apr; 14(3):298-301. PubMed ID: 19444964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Role of PPARγ, a transcription factor in cardiovascular disease].
    Mukohda M
    Nihon Yakurigaku Zasshi; 2019; 154(2):56-60. PubMed ID: 31406043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of aquaporin-1 and sodium channel on pleural fluid transport in mice].
    Jiang JJ; Bai CX; Hong QY; Song YL
    Zhonghua Jie He He Hu Xi Za Zhi; 2003 Jan; 26(1):26-9. PubMed ID: 12775265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Agonistic induction of PPARγ reverses cigarette smoke-induced emphysema.
    Shan M; You R; Yuan X; Frazier MV; Porter P; Seryshev A; Hong JS; Song LZ; Zhang Y; Hilsenbeck S; Whitehead L; Zarinkamar N; Perusich S; Corry DB; Kheradmand F
    J Clin Invest; 2014 Mar; 124(3):1371-81. PubMed ID: 24569375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myocardial, smooth muscle, nephron, and collecting duct gene targeting reveals the organ sites of endothelin A receptor antagonist fluid retention.
    Stuart D; Chapman M; Rees S; Woodward S; Kohan DE
    J Pharmacol Exp Ther; 2013 Aug; 346(2):182-9. PubMed ID: 23709116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Molecular mechanism of edema formation in nephrotic syndrome].
    Deschênes G; Guigonis V; Doucet A
    Arch Pediatr; 2004 Sep; 11(9):1084-94. PubMed ID: 15351000
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thiazolidinediones and Edema: Recent Advances in the Pathogenesis of Thiazolidinediones-Induced Renal Sodium Retention.
    Horita S; Nakamura M; Satoh N; Suzuki M; Seki G
    PPAR Res; 2015; 2015():646423. PubMed ID: 26074951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PPARgamma agonists do not directly enhance basal or insulin-stimulated Na(+) transport via the epithelial Na(+) channel.
    Nofziger C; Chen L; Shane MA; Smith CD; Brown KK; Blazer-Yost BL
    Pflugers Arch; 2005 Dec; 451(3):445-53. PubMed ID: 16170524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of renal proximal tubule transport in thiazolidinedione-induced volume expansion.
    Seki G; Endo Y; Suzuki M; Yamada H; Horita S; Fujita T
    World J Nephrol; 2012 Oct; 1(5):146-50. PubMed ID: 24175252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diabetes drugs offered fresh start.
    Ledford H
    Nature; 2010 Jul; 466(7305):420-1. PubMed ID: 20651662
    [No Abstract]   [Full Text] [Related]  

  • 55. Systemic PPARγ deletion causes severe disturbance in fluid homeostasis in mice.
    Zhou L; Panasiuk A; Downton M; Zhao D; Yang B; Jia Z; Yang T
    Physiol Genomics; 2015 Nov; 47(11):541-7. PubMed ID: 26330489
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thiazolidinedione-induced fluid retention: recent insights into the molecular mechanisms.
    Bełtowski J; Rachańczyk J; Włodarczyk M
    PPAR Res; 2013; 2013():628628. PubMed ID: 23577024
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells.
    Ross SB; Fuller CM; Bubien JK; Benos DJ
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C1181-5. PubMed ID: 17615161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Renal and vascular mechanisms of thiazolidinedione-induced fluid retention.
    Yang T; Soodvilai S
    PPAR Res; 2008; 2008():943614. PubMed ID: 18784848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Amiloride-sensitive sodium channel in the nephron and its activation by vasopressin].
    Coscoy S; de Weille J; Lingueglia E; Fukuda N; Matthay M; Lazdunski M; Barbry P
    Ann Endocrinol (Paris); 2000 May; 61(2):145-6. PubMed ID: 10960333
    [No Abstract]   [Full Text] [Related]  

  • 60. Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones.
    Alemán-González-Duhart D; Tamay-Cach F; Álvarez-Almazán S; Mendieta-Wejebe JE
    PPAR Res; 2016; 2016():7614270. PubMed ID: 27313601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.