These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16007335)

  • 1. Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk.
    Tommasini SM; Nasser P; Schaffler MB; Jepsen KJ
    J Bone Miner Res; 2005 Aug; 20(8):1372-80. PubMed ID: 16007335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological co-adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility.
    Tommasini SM; Nasser P; Hu B; Jepsen KJ
    J Bone Miner Res; 2008 Feb; 23(2):236-46. PubMed ID: 17922614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties.
    Tommasini SM; Nasser P; Jepsen KJ
    Bone; 2007 Feb; 40(2):498-505. PubMed ID: 17035111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape and function of the diaphysis of the human tibia.
    Cristofolini L; Angeli E; Juszczyk JM; Juszczyk MM
    J Biomech; 2013 Jul; 46(11):1882-92. PubMed ID: 23726289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.
    Franklyn M; Oakes B; Field B; Wells P; Morgan D
    Am J Sports Med; 2008 Jun; 36(6):1179-89. PubMed ID: 18490475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of high versus low loading on bone strength in middle life.
    Milgrom C; Constantini N; Milgrom Y; Lavi D; Appelbaum Y; Novack V; Finestone A
    Bone; 2012 Apr; 50(4):865-9. PubMed ID: 22252043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The area moment of inertia of the tibia: a risk factor for stress fractures.
    Milgrom C; Giladi M; Simkin A; Rand N; Kedem R; Kashtan H; Stein M; Gomori M
    J Biomech; 1989; 22(11-12):1243-8. PubMed ID: 2625424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults.
    Jepsen KJ; Centi A; Duarte GF; Galloway K; Goldman H; Hampson N; Lappe JM; Cullen DM; Greeves J; Izard R; Nindl BC; Kraemer WJ; Negus CH; Evans RK
    J Bone Miner Res; 2011 Dec; 26(12):2872-85. PubMed ID: 21898595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits.
    Jepsen KJ; Evans R; Negus CH; Gagnier JJ; Centi A; Erlich T; Hadid A; Yanovich R; Moran DS
    J Bone Miner Res; 2013 Jun; 28(6):1290-300. PubMed ID: 23362125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors.
    Beck TJ; Ruff CB; Shaffer RA; Betsinger K; Trone DW; Brodine SK
    Bone; 2000 Sep; 27(3):437-44. PubMed ID: 10962357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits.
    Beck TJ; Ruff CB; Mourtada FA; Shaffer RA; Maxwell-Williams K; Kao GL; Sartoris DJ; Brodine S
    J Bone Miner Res; 1996 May; 11(5):645-53. PubMed ID: 9157779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study.
    Milgrom C; Giladi M; Simkin A; Rand N; Kedem R; Kashtan H; Stein M
    Clin Orthop Relat Res; 1988 Jun; (231):216-21. PubMed ID: 3370876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone stress in runners with tibial stress fracture.
    Meardon SA; Willson JD; Gries SR; Kernozek TW; Derrick TR
    Clin Biomech (Bristol, Avon); 2015 Nov; 30(9):895-902. PubMed ID: 26282463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women.
    Xu C; Silder A; Zhang J; Reifman J; Unnikrishnan G
    BMC Musculoskelet Disord; 2017 Mar; 18(1):125. PubMed ID: 28330449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the etiology of the posteromedial tibial stress fracture.
    Milgrom C; Burr DB; Finestone AS; Voloshin A
    Bone; 2015 Sep; 78():11-4. PubMed ID: 25933941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone geometry and lower extremity bone stress injuries in male runners.
    Popp KL; Frye AC; Stovitz SD; Hughes JM
    J Sci Med Sport; 2020 Feb; 23(2):145-150. PubMed ID: 31594711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low width of tubular bones is associated with increased risk of fragility fracture in elderly men--the MINOS study.
    Szulc P; Munoz F; Duboeuf F; Marchand F; Delmas PD
    Bone; 2006 Apr; 38(4):595-602. PubMed ID: 16249130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of aging human bone to mixed-mode fracture increases bone fragility.
    George WT; Vashishth D
    Bone; 2006 Jan; 38(1):105-11. PubMed ID: 16182625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia.
    Chou LB; Mann RA; Coughlin MJ; McPeake WT; Mizel MS
    Foot Ankle Int; 2007 Feb; 28(2):199-201. PubMed ID: 17296139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex differences in parameters of bone strength in new recruits: beyond bone density.
    Evans RK; Negus C; Antczak AJ; Yanovich R; Israeli E; Moran DS
    Med Sci Sports Exerc; 2008 Nov; 40(11 Suppl):S645-53. PubMed ID: 18849870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.