BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16007568)

  • 21. The application of the herbicide bromoxynil to a model soil-derived bacterial community: impact on degradation and community structure.
    Baxter J; Cummings SP
    Lett Appl Microbiol; 2006 Dec; 43(6):659-65. PubMed ID: 17083713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of simazine on growth of microorganisms and decomposition of this preparation in various types of soil.
    Strzelec A
    Acta Microbiol Pol B; 1975; 7(1):3-13. PubMed ID: 235828
    [No Abstract]   [Full Text] [Related]  

  • 23. Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil.
    Calvayrac C; Martin-Laurent F; Faveaux A; Picault N; Panaud O; Coste CM; Chaabane H; Cooper JF
    Pest Manag Sci; 2012 Mar; 68(3):340-7. PubMed ID: 21919184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Degradation of herbicide Alvison-8 by microorganisms].
    Finkel'shtein ZI; Golovleva LA; Golovlev EL; Skriabin GK
    Mikrobiologiia; 1976; 45(5):879-83. PubMed ID: 1004275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources.
    Wan R; Yang Y; Sun W; Wang Z; Xie S
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):3175-81. PubMed ID: 24194418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor.
    Mondragón-Parada ME; Ruiz-Ordaz N; Tafoya-Garnica A; Juárez-Ramírez C; Curiel-Quesada E; Galíndez-Mayer J
    J Ind Microbiol Biotechnol; 2008 Jul; 35(7):767-76. PubMed ID: 18392868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR.
    Martin-Laurent F; Piutti S; Hallet S; Wagschal I; Philippot L; Catroux G; Soulas G
    Pest Manag Sci; 2003 Mar; 59(3):259-68. PubMed ID: 12639042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occurrence, diversity and community structure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, P.R. China.
    Bazhanov DP; Li C; Li H; Li J; Zhang X; Chen X; Yang H
    BMC Microbiol; 2016 Nov; 16(1):265. PubMed ID: 27821056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prevalence of the gene trzN and biogeographic patterns among atrazine-degrading bacteria isolated from 13 Colombian agricultural soils.
    Arbeli Z; Fuentes C
    FEMS Microbiol Ecol; 2010 Sep; 73(3):611-23. PubMed ID: 20597985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria.
    Willumsen PA; Johansen JE; Karlson U; Hansen BM
    Appl Microbiol Biotechnol; 2005 May; 67(3):420-8. PubMed ID: 15650851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac.
    Lü Z; Min H; Wu S; Ruan A
    J Environ Sci Health B; 2003 Nov; 38(6):771-82. PubMed ID: 14649708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of combination of plant and microorganism on degradation of simazine in soil.
    Liao M; Xie X
    J Environ Sci (China); 2008; 20(2):195-8. PubMed ID: 18574961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand.
    Aislabie J; Bej AK; Ryburn J; Lloyd N; Wilkins A
    FEMS Microbiol Ecol; 2005 Apr; 52(2):279-86. PubMed ID: 16329913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil.
    Delgado-Moreno L; Peña A
    Sci Total Environ; 2009 Feb; 407(5):1489-95. PubMed ID: 19046758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of herbicide and soil amendment on growth and photosynthetic responses in olive crops.
    Redondo-Gómez S; Mateos-Naranjo E; Cox L; Cornejo J; Figueroa E
    J Environ Sci Health B; 2007; 42(5):523-8. PubMed ID: 17562460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of ethylamine degrading bacteria to atrazine degradation in soils.
    Smith D; Crowley DE
    FEMS Microbiol Ecol; 2006 Nov; 58(2):271-7. PubMed ID: 17064268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for cross-adaptation between s-triazine herbicides resulting in reduced efficacy under field conditions.
    Krutz LJ; Burke IC; Reddy KN; Zablotowicz RM
    Pest Manag Sci; 2008 Oct; 64(10):1024-30. PubMed ID: 18473320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation.
    Widada J; Nojiri H; Omori T
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):45-59. PubMed ID: 12382041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.
    Onneby K; Jonsson A; Stenström J
    Biodegradation; 2010 Feb; 21(1):21-9. PubMed ID: 19557524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for 2,4-D mineralisation in Mediterranean soils: impact of moisture content and temperature.
    Bouseba B; Zertal A; Beguet J; Rouard N; Devers M; Martin C; Martin-Laurent F
    Pest Manag Sci; 2009 Sep; 65(9):1021-9. PubMed ID: 19479783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.