These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16007836)

  • 21. Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2005 Nov; 95(21):211102. PubMed ID: 16384128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom.
    Somiya K; Miyakawa O
    Appl Opt; 2010 Aug; 49(23):4335-42. PubMed ID: 20697434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherent control of vacuum squeezing in the gravitational-wave detection band.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2006 Jul; 97(1):011101. PubMed ID: 16907363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical transfer functions of Kerr nonlinear cavities and interferometers.
    Rehbein H; Harms J; Schnabel R; Danzmann K
    Phys Rev Lett; 2005 Nov; 95(19):193001. PubMed ID: 16383975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters.
    Miao H; Ma Y; Zhao C; Chen Y
    Phys Rev Lett; 2015 Nov; 115(21):211104. PubMed ID: 26636839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-frequency fiber amplifier at 1.5 µm with 100 W in the linearly-polarized TEM
    De Varona O; Fittkau W; Booker P; Theeg T; Steinke M; Kracht D; Neumann J; Wessels P
    Opt Express; 2017 Oct; 25(21):24880-24892. PubMed ID: 29041161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarization Sagnac interferometer with postmodulation for gravitational-wave detection.
    Beyersdorf PT; Fejer MM; Byer RL
    Opt Lett; 1999 Aug; 24(16):1112-4. PubMed ID: 18073956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-efficiency electro-optic amplitude modulation with delayed coherent addition.
    Ohmae N; Moriwaki S; Mio N
    Opt Lett; 2011 Jan; 36(2):238-40. PubMed ID: 21263512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Squeezed vacuum states of light for gravitational wave detectors.
    Barsotti L; Harms J; Schnabel R
    Rep Prog Phys; 2019 Jan; 82(1):016905. PubMed ID: 29569572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental demonstration of weak-light laser ranging and data communication for LISA.
    Esteban JJ; García AF; Barke S; Peinado AM; Cervantes FG; Bykov I; Heinzel G; Danzmann K
    Opt Express; 2011 Aug; 19(17):15937-46. PubMed ID: 21934957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Balanced heterodyne signal extraction in a postmodulated Sagnac interferometer at low frequency.
    Sun KX; Fejer MM; Gustafson EK; Byer RL
    Opt Lett; 1997 Oct; 22(19):1485-7. PubMed ID: 18188276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detuned Twin-Signal-Recycling for ultrahigh-precision interferometers.
    Thüring A; Schnabel R; Lück H; Danzmann K
    Opt Lett; 2007 Apr; 32(8):985-7. PubMed ID: 17375176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alignment of an interferometric gravitational wave detector.
    Fritschel P; Mavalvala N; Shoemaker D; Sigg D; Zucker M; González G
    Appl Opt; 1998 Oct; 37(28):6734-47. PubMed ID: 18301487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Residual amplitude modulation in interferometric gravitational wave detectors.
    Kokeyama K; Izumi K; Korth WZ; Smith-Lefebvre N; Arai K; Adhikari RX
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jan; 31(1):81-8. PubMed ID: 24561943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical design of the proposed Australian International Gravitational Observatory.
    Barriga P; Arain MA; Mueller G; Zhao C; Blair DG
    Opt Express; 2009 Feb; 17(4):2149-65. PubMed ID: 19219119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.
    Ramette J; Kasprzack M; Brooks A; Blair C; Wang H; Heintze M
    Appl Opt; 2016 Apr; 55(10):2619-25. PubMed ID: 27139664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wide-band direct measurement of thermal fluctuations in an interferometer.
    Numata K; Ando M; Yamamoto K; Otsuka S; Tsubono K
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):260602. PubMed ID: 14754033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward optomechanical parametric instability prediction in ground-based gravitational wave detectors.
    Cohen DE; Allocca A; Bogaert G; Puppo P; Jacqmin T
    Appl Opt; 2021 Sep; 60(27):8540-8549. PubMed ID: 34612957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High power, low-noise, and multiply resonant photodetector for interferometric gravitational wave detectors.
    Grote H
    Rev Sci Instrum; 2007 May; 78(5):054704. PubMed ID: 17552849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.