BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16007850)

  • 1. High-efficiency aerosol scatterometer that uses an integrating sphere for the calibration of multiwavelength lidar data.
    Fukagawa S; Kuze H; Lagrosas N; Takeuchi N
    Appl Opt; 2005 Jun; 44(17):3520-6. PubMed ID: 16007850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-wavelength Mie-scattering Scheimpflug lidar system developed for the studies of the aerosol extinction coefficient and the Ångström exponent.
    Mei L; Kong Z; Ma T
    Opt Express; 2018 Nov; 26(24):31942-31956. PubMed ID: 30650773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships.
    Perrone MR; Romano S; Orza JA
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16570-89. PubMed ID: 26077321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of aerosol properties derived from sampling and near-horizontal lidar measurements using Mie scattering theory.
    Xiafukaiti A; Lagrosas N; Mariel Ong P; Saitoh N; Shiina T; Kuze H
    Appl Opt; 2020 Sep; 59(26):8014-8022. PubMed ID: 32976477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the lidar ratio for atmospheric aerosols with a 180 degrees backscatter nephelometer.
    Doherty SJ; Anderson TL; Charlson RJ
    Appl Opt; 1999 Mar; 38(9):1823-32. PubMed ID: 18305813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent.
    Markowicz KM; Chiliński MT
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of dry nephelometer measurements to ambient conditions at the Jungfraujoch.
    Nessler R; Weingartner E; Baltensperger U
    Environ Sci Technol; 2005 Apr; 39(7):2219-28. PubMed ID: 15871257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.
    Chemyakin E; Müller D; Burton S; Kolgotin A; Hostetler C; Ferrare R
    Appl Opt; 2014 Nov; 53(31):7252-66. PubMed ID: 25402885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observational study of aerosol hygroscopic growth on scattering coefficient in Beijing: A case study in March of 2018.
    Xia C; Sun J; Qi X; Shen X; Zhong J; Zhang X; Wang Y; Zhang Y; Hu X
    Sci Total Environ; 2019 Oct; 685():239-247. PubMed ID: 31174121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering.
    Dolgos G; Martins JV
    Opt Express; 2014 Sep; 22(18):21972-90. PubMed ID: 25321572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotational Raman lidar for obtaining aerosol scattering coefficients.
    Kim D; Cha H
    Opt Lett; 2005 Jul; 30(13):1728-30. PubMed ID: 16075552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of the 1064 nm lidar channel using water phase and cirrus clouds.
    Wu Y; Gan CM; Cordero L; Gross B; Moshary F; Ahmed S
    Appl Opt; 2011 Jul; 50(21):3987-99. PubMed ID: 21772382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an ideal integrating nephelometer.
    Varma R; Moosmüller H; Arnott WP
    Opt Lett; 2003 Jun; 28(12):1007-9. PubMed ID: 12836761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis.
    Sroga JT; Eloranta EW; Shipley ST; Roesler FL; Tryon PJ
    Appl Opt; 1983 Dec; 22(23):3725-32. PubMed ID: 18200257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.
    Tang Y; Huang Y; Li L; Chen H; Chen J; Yang X; Gao S; Gross DS
    J Environ Sci (China); 2014 Dec; 26(12):2412-22. PubMed ID: 25499489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements.
    Pahlow M; Müller D; Tesche M; Eichler H; Feingold G; Eberhard WL; Cheng YF
    Appl Opt; 2006 Oct; 45(28):7429-42. PubMed ID: 16983432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lidar calibration technique using laboratory-generated aerosols.
    Jarzembski MA; Srivastava V; Chambers DM
    Appl Opt; 1996 Apr; 35(12):2096-108. PubMed ID: 21085338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Algorithm to retrieve aerosol properties from analysis of multiple scattering influences on both Ground-Based and Space-Borne Lidar Returns.
    Lu X; Jiang Y; Zhang X; Lu X; He Y
    Opt Express; 2009 May; 17(11):8719-28. PubMed ID: 19466120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data.
    Kolgotin A; Müller D; Chemyakin E; Romanov A
    Appl Opt; 2016 Dec; 55(34):9850-9865. PubMed ID: 27958481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosol-profile measurements in the lower troposphere with four-wavelength bistatic argon-ion lidar.
    Devara PC; Raj PE; Pandithurai G
    Appl Opt; 1995 Jul; 34(21):4416-25. PubMed ID: 21052276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.