These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 16007963)
21. Biological control of Culex mosquitoes (Diptera: Culicidae) by the tadpole shrimp, Triops longicaudatus (Notostraca: Triopsidae). Tietze NS; Mulla MS J Med Entomol; 1991 Jan; 28(1):24-31. PubMed ID: 2033616 [TBL] [Abstract][Full Text] [Related]
22. Compatibility of Bacillus thuringiensis serovar israelensis and chemical insecticides for the control of Aedes mosquitoes. Seleena P; Lee HL; Chiang YF J Vector Ecol; 1999 Dec; 24(2):216-23. PubMed ID: 10672551 [TBL] [Abstract][Full Text] [Related]
23. Field trials with Bacillus sphaericus formulations against polluted water mosquitoes in a suburban area of Bangkok, Thailand. Mulla MS; Rodcharoen J; Ngamsuk W; Tawatsin A; Pan-Urai P; Thavara U J Am Mosq Control Assoc; 1997 Dec; 13(4):297-304. PubMed ID: 9474553 [TBL] [Abstract][Full Text] [Related]
24. Documentation of high-level bacillus Sphaericus 2362 resistance in field populations of Culex quinquefasciatus breeding in polluted water in Thailand. Su T; Mulla MS J Am Mosq Control Assoc; 2004 Dec; 20(4):405-11. PubMed ID: 15669382 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of methylated soy oil and water-based formulations of Bacillus thuringiensis var. Israelensis and Golden Bear Oil (GB-1111) against anopheles quadrimaculatus larvae in small rice plots. Dennett JA; Lampman RL; Novak RJ; Meisch MV J Am Mosq Control Assoc; 2000 Dec; 16(4):342-5. PubMed ID: 11198923 [TBL] [Abstract][Full Text] [Related]
26. Summary of field trials in 1964-69 in Rangoon, Burma, of organophosphorus larvicides and oils against Culex pipiens fatigens larvae in polluted water. Self LS; Tun MM Bull World Health Organ; 1970; 43(6):841-51. PubMed ID: 4253561 [TBL] [Abstract][Full Text] [Related]
27. Laboratory evaluations of methylated soy oil and monoterpenes as mosquito larvicides. Lampman R; Eckenbach U; Seigler D; Novak R J Am Mosq Control Assoc; 2000 Jun; 16(2):153-7. PubMed ID: 10901640 [TBL] [Abstract][Full Text] [Related]
28. Control of pest blackflies (Diptera:Simuliidae) along the Orange River, South Africa: 1990-1995. Palmer RW; Edwardes M; Nevill EM Onderstepoort J Vet Res; 1996 Dec; 63(4):289-304. PubMed ID: 9173360 [TBL] [Abstract][Full Text] [Related]
29. Effect of ultraviolet radiation on spore viability and mosquitocidal activity of an indigenous ISPC-8 Bacillus sphaericus Neide strain. Hadapad AB; Vijayalakshmi N; Hire RS; Dongre TK Acta Trop; 2008 Aug; 107(2):113-6. PubMed ID: 18538292 [TBL] [Abstract][Full Text] [Related]
30. Impact of Storage and Handling Temperatures On the Activities of Mosquito Larvicides. Su T; Thieme JL; Cheng ML J Am Mosq Control Assoc; 2018 Sep; 34(3):244-248. PubMed ID: 31442175 [TBL] [Abstract][Full Text] [Related]
31. Microbial larvicides for the control of nuisance aquatic midges (Diptera: Chironomidae) inhabiting mesocosms and man-made lakes in California. Rodcharoen J; Mulla MS; Chaney JD J Am Mosq Control Assoc; 1991 Mar; 7(1):56-62. PubMed ID: 2045809 [TBL] [Abstract][Full Text] [Related]
32. Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. Tiwary M; Naik SN; Tewary DK; Mittal PK; Yadav S J Vector Borne Dis; 2007 Sep; 44(3):198-204. PubMed ID: 17896622 [TBL] [Abstract][Full Text] [Related]
33. Ice granules containing endotoxins of microbial agents for the control of mosquito larvae--a new application technique. Becker N J Am Mosq Control Assoc; 2003 Mar; 19(1):63-6. PubMed ID: 12674537 [TBL] [Abstract][Full Text] [Related]
34. [Evaluation of the triflumuron and the mixture of Bacillus thuringiensis plus Bacillus sphaericus for control of the immature stages of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in catch basins]. Giraldo-Calderón GI; Pérez M; Morales CA; Ocampo CB Biomedica; 2008 Jun; 28(2):224-33. PubMed ID: 18719724 [TBL] [Abstract][Full Text] [Related]
35. Field efficacy and nontarget effects of the mosquito larvicides temephos, methoprene, and Bacillus thuringiensis var. israelensis in Florida mangrove swamps. Lawler SP; Jensen T; Dritz DA; Wichterman G J Am Mosq Control Assoc; 1999 Dec; 15(4):446-52. PubMed ID: 10612606 [TBL] [Abstract][Full Text] [Related]
36. Optimization of spray-drying conditions for the large-scale preparation of Bacillus thuringiensis var. israelensis after downstream processing. Prabakaran G; Hoti SL Biotechnol Bioeng; 2008 May; 100(1):103-7. PubMed ID: 18023058 [TBL] [Abstract][Full Text] [Related]
37. [Effectiveness of Bacillus sphaericus strain 2362 on larvae of Anopheles nuñeztovari]. Rojas JE; Mazzarri M; Sojo M; García-A GY Invest Clin; 2001 Jun; 42(2):131-46. PubMed ID: 11416979 [TBL] [Abstract][Full Text] [Related]
38. [Comparison of mosquito larvicidal efficacy between microbial encapsulated BTI (EBTI) and standard BTI (SBTI)]. Zhang ZH; Ratanatham S; Zomer E; Spielman A; Ye BH; Lu ZG; Zhang YJ; Shi ZM Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1992; 10(3):211-4. PubMed ID: 1307279 [TBL] [Abstract][Full Text] [Related]
39. Interaction of a pesticide and larval competition on life history traits of Culex pipiens. Muturi EJ; Costanzo K; Kesavaraju B; Lampman R; Alto BW Acta Trop; 2010 Nov; 116(2):141-6. PubMed ID: 20637716 [TBL] [Abstract][Full Text] [Related]
40. Alternative Chemical Control Options and Monitoring Techniques for Triops longicaudatus (Notostraca: Triopsidae) in California Rice. Bloese JB; Goding KM; Godfrey LD J Econ Entomol; 2022 Feb; 115(1):273-278. PubMed ID: 34761266 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]