BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16007994)

  • 1. Efficiency for unretained solutes in packed column supercritical fluid chromatography II. Experimental results for elution of methane using large pressure drops.
    Xu W; Peterson DL; Schroden JJ; Poe DP
    J Chromatogr A; 2005 Jun; 1078(1-2):162-70. PubMed ID: 16007994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of supercritical fluid chromatography columns in different thermal environments.
    Kaczmarski K; Poe DP; Tarafder A; Guiochon G
    J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency for unretained solutes in packed column supercritical fluid chromatography. I. Theory for isothermal conditions and correction factors for carbon dioxide.
    Poe DP
    J Chromatogr A; 2005 Jun; 1078(1-2):152-61. PubMed ID: 16007993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.
    Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G
    J Chromatogr A; 2014 Jan; 1323():143-56. PubMed ID: 24315126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles.
    Kaczmarski K; Poe DP; Tarafder A; Guiochon G
    J Chromatogr A; 2012 Aug; 1250():115-23. PubMed ID: 22687711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.
    Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G
    J Chromatogr A; 2012 Aug; 1250():105-14. PubMed ID: 22521956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography.
    Poe DP; Schroden JJ
    J Chromatogr A; 2009 Nov; 1216(45):7915-26. PubMed ID: 19767007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Joule-Thomson coefficient as a criterion for efficient operating conditions in supercritical fluid chromatography.
    Poe DP; Helmueller S; Kobany S; Feldhacker H; Kaczmarski K
    J Chromatogr A; 2017 Jan; 1482():76-96. PubMed ID: 28043691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography.
    Zauner J; Lusk R; Koski S; Poe DP
    J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.
    Gritti F; Fogwill M; Gilar M; Jarrell JA
    J Chromatogr A; 2016 Oct; 1468():217-227. PubMed ID: 27658377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the axial and radial temperature profiles of a chromatographic column. Influence of thermal insulation on column efficiency.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Jan; 1138(1-2):141-57. PubMed ID: 17141792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer.
    Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On axial temperature gradients due to large pressure drops in dense fluid chromatography.
    Colgate SO; Berger TA
    J Chromatogr A; 2015 Mar; 1385():94-102. PubMed ID: 25662064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the isopycnic plots in designing operations of supercritical fluid chromatography: IV. Pressure and density drops along columns.
    Tarafder A; Kaczmarski K; Ranger M; Poe DP; Guiochon G
    J Chromatogr A; 2012 May; 1238():132-45. PubMed ID: 22503621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of ultra high performance supercritical neat carbon dioxide chromatography at conventional pressures.
    Sarazin C; Thiébaut D; Sassiat P; Vial J
    J Sep Sci; 2011 Oct; 34(19):2773-8. PubMed ID: 21898804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the isopycnic plots in designing operations of supercritical fluid chromatography. V. Pressure and density drops using mixtures of carbon dioxide and methanol as the mobile phase.
    Tarafder A; Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2012 Oct; 1258():136-51. PubMed ID: 22935727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The modeling of overloaded elution band profiles in supercritical fluid chromatography.
    Vajda P; Guiochon G
    J Chromatogr A; 2014 Mar; 1333():116-23. PubMed ID: 24529406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictions of overloaded concentration profiles in supercritical fluid chromatography.
    Leśko M; Samuelsson J; Glenne E; Kaczmarski K; Fornstedt T
    J Chromatogr A; 2021 Feb; 1639():461926. PubMed ID: 33535113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of thermal processes in high pressure liquid chromatography: II. Thermal heterogeneity at very high pressures.
    Kaczmarski K; Gritti F; Kostka J; Guiochon G
    J Chromatogr A; 2009 Sep; 1216(38):6575-86. PubMed ID: 19665717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stationary phases for packed-column supercritical fluid chromatography.
    Poole CF
    J Chromatogr A; 2012 Aug; 1250():157-71. PubMed ID: 22209357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.