These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi. Oza SL; Tetaud E; Ariyanayagam MR; Warnon SS; Fairlamb AH J Biol Chem; 2002 Sep; 277(39):35853-61. PubMed ID: 12121990 [TBL] [Abstract][Full Text] [Related]
7. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. Sousa AF; Gomes-Alves AG; Benítez D; Comini MA; Flohé L; Jaeger T; Passos J; Stuhlmann F; Tomás AM; Castro H Free Radic Biol Med; 2014 Aug; 73():229-38. PubMed ID: 24853758 [TBL] [Abstract][Full Text] [Related]
8. Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity. González-Chávez Z; Vázquez C; Mejia-Tlachi M; Márquez-Dueñas C; Manning-Cela R; Encalada R; Rodríguez-Enríquez S; Michels PAM; Moreno-Sánchez R; Saavedra E Redox Biol; 2019 Sep; 26():101231. PubMed ID: 31203195 [TBL] [Abstract][Full Text] [Related]
9. Trypanothione synthesis in crithidia revisited. Comini M; Menge U; Wissing J; Flohé L J Biol Chem; 2005 Feb; 280(8):6850-60. PubMed ID: 15537651 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the putative thiol conjugate transporter TbMRPA causes melarsoprol resistance in Trypanosoma brucei. Shahi SK; Krauth-Siegel RL; Clayton CE Mol Microbiol; 2002 Mar; 43(5):1129-38. PubMed ID: 11918801 [TBL] [Abstract][Full Text] [Related]
11. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei. Zimmermann S; Oufir M; Leroux A; Krauth-Siegel RL; Becker K; Kaiser M; Brun R; Hamburger M; Adams M Bioorg Med Chem; 2013 Nov; 21(22):7202-9. PubMed ID: 24080104 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Fairlamb AH; Carter NS; Cunningham M; Smith K Mol Biochem Parasitol; 1992 Jul; 53(1-2):213-22. PubMed ID: 1501641 [TBL] [Abstract][Full Text] [Related]
13. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes. Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL Elife; 2020 Jan; 9():. PubMed ID: 32003744 [TBL] [Abstract][Full Text] [Related]
14. Effects of polyamines on two strains of Trypanosoma brucei in infected rats and in vitro culture. Nishimura K; Yanase T; Araki N; Ohnishi Y; Kozaki S; Shima K; Asakura M; Samosomsuk W; Yamasaki S J Parasitol; 2006 Apr; 92(2):211-7. PubMed ID: 16729674 [TBL] [Abstract][Full Text] [Related]
15. Gene knockdown of gamma-glutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme. Huynh TT; Huynh VT; Harmon MA; Phillips MA J Biol Chem; 2003 Oct; 278(41):39794-800. PubMed ID: 12888552 [TBL] [Abstract][Full Text] [Related]
16. Preparative enzymatic synthesis of trypanothione and trypanothione analogues. Comini MA; Dirdjaja N; Kaschel M; Krauth-Siegel RL Int J Parasitol; 2009 Aug; 39(10):1059-62. PubMed ID: 19477177 [TBL] [Abstract][Full Text] [Related]
18. In vivo effects of difluoromethylornithine on trypanothione and polyamine levels in bloodstream forms of Trypanosoma brucei. Fairlamb AH; Henderson GB; Bacchi CJ; Cerami A Mol Biochem Parasitol; 1987 Jun; 24(2):185-91. PubMed ID: 3114634 [TBL] [Abstract][Full Text] [Related]
19. Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents. Augustyns K; Amssoms K; Yamani A; Rajan PK; Haemers A Curr Pharm Des; 2001 Aug; 7(12):1117-41. PubMed ID: 11472257 [TBL] [Abstract][Full Text] [Related]