BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 16008553)

  • 1. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Tanaka K; Bailly X; Zal F; Suzuki T
    Int J Biol Macromol; 2005 Oct; 37(1-2):54-60. PubMed ID: 16188310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the diverse array of phosphagen systems present in annelids.
    Suzuki T; Uda K; Adachi M; Sanada H; Tanaka K; Mizuta C; Ishida K; Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Jan; 152(1):60-6. PubMed ID: 18852060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity.
    Ellington WR; Bush J
    Biochem Biophys Res Commun; 2002 Mar; 291(4):939-44. PubMed ID: 11866456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the cytoplasmic and mitochondrial phosphagen kinases unique to annelid groups.
    Tanaka K; Uda K; Shimada M; Takahashi K; Gamou S; Ellington WR; Suzuki T
    J Mol Evol; 2007 Nov; 65(5):616-25. PubMed ID: 17932618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and expression of mitochondrial and protoflagellar creatine kinases from a marine sponge: implications for the origin of intracellular energy transport systems.
    Sona S; Suzuki T; Ellington WR
    Biochem Biophys Res Commun; 2004 May; 317(4):1207-14. PubMed ID: 15094398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene structure of the two-domain taurocyamine kinase from Paragonimus westermani: evidence for a distinct lineage of trematode phosphagen kinases.
    Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T
    FEBS Lett; 2013 Jul; 587(14):2278-83. PubMed ID: 23751729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis.
    Tokuhiro S; Nagataki M; Jarilla BR; Uda K; Suzuki T; Sugiura T; Agatsuma T
    Mol Biochem Parasitol; 2014; 194(1-2):56-63. PubMed ID: 24815317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, characterization, and cDNA-derived amino acid sequence of glycocyamine kinase from the tropical marine worm Namalycastis sp.
    Mizuta C; Tanaka K; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):387-93. PubMed ID: 15694586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of amino acid residues responsible for taurocyamine binding in mitochondrial taurocyamine kinase from Arenicola brasiliensis.
    Tanaka K; Matsumoto T; Suzuki T
    Biochim Biophys Acta; 2011 Oct; 1814(10):1219-25. PubMed ID: 21684357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Y84 on domain 1 and Y87 on domain 2 of Paragonimus westermani taurocyamine kinase: Insights on the substrate binding mechanism of a trematode phosphagen kinase.
    Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T
    Exp Parasitol; 2013 Dec; 135(4):695-700. PubMed ID: 24184078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization and kinetic properties of a novel two-domain taurocyamine kinase from the lung fluke Paragonimus westermani.
    Jarilla BR; Tokuhiro S; Nagataki M; Hong SJ; Uda K; Suzuki T; Agatsuma T
    FEBS Lett; 2009 Jul; 583(13):2218-24. PubMed ID: 19500582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cDNA identification, comparison and phylogenetic aspects of lombricine kinase from two oligochaete species.
    Doumen C
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Jun; 156(2):137-43. PubMed ID: 20230902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative splicing produces transcripts coding for alpha and beta chains of a hetero-dimeric phosphagen kinase.
    Ellington WR; Yamashita D; Suzuki T
    Gene; 2004 Jun; 334():167-74. PubMed ID: 15256266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of kinetic constants of creatine kinase isoforms.
    Matsushima K; Uda K; Ishida K; Kokufuta C; Iwasaki N; Suzuki T
    Int J Biol Macromol; 2006 Mar; 38(2):83-8. PubMed ID: 16451808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.