BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16008574)

  • 1. Proteomic discovery of chemical probes that perturb protein complexes in human cells.
    Lazear MR; Remsberg JR; Jaeger MG; Rothamel K; Her HL; DeMeester KE; Njomen E; Hogg SJ; Rahman J; Whitby LR; Won SJ; Schafroth MA; Ogasawara D; Yokoyama M; Lindsey GL; Li H; Germain J; Barbas S; Vaughan J; Hanigan TW; Vartabedian VF; Reinhardt CJ; Dix MM; Koo SJ; Heo I; Teijaro JR; Simon GM; Ghosh B; Abdel-Wahab O; Ahn K; Saghatelian A; Melillo B; Schreiber SL; Yeo GW; Cravatt BF
    Mol Cell; 2023 May; 83(10):1725-1742.e12. PubMed ID: 37084731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Chemoproteomics for Mapping the Active Proteome.
    Swenson CS; Pillai KS; Carlos AJ; Moellering RE
    Isr J Chem; 2023 Mar; 63(3-4):. PubMed ID: 38046285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass Spectrometry Imaging: An Emerging Technology in Medical Parasitology.
    Yu B; Zhan R; Hu Y; Lv Z
    Anal Chem; 2024 May; 96(20):8011-8020. PubMed ID: 38579105
    [No Abstract]   [Full Text] [Related]  

  • 4. Microbiology and proteomics, getting the best of both worlds!
    Armengaud J
    Environ Microbiol; 2013 Jan; 15(1):12-23. PubMed ID: 22708953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-based Protein Profiling of Serine Hydrolase Superfamily Enzymes.
    Dolui AK; Latha M; Vijayaraj P
    Bio Protoc; 2022 Mar; 12(6):e4356. PubMed ID: 35434188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-based protein profiling of rice (Oryza sativa L.) bran serine hydrolases.
    Dolui AK; Vijayakumar AK; Rajasekharan R; Vijayaraj P
    Sci Rep; 2020 Sep; 10(1):15191. PubMed ID: 32938958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Probe-Enabled Approach for the Selective Isolation and Characterization of Functionally Active Subpopulations in the Gut Microbiome.
    Whidbey C; Sadler NC; Nair RN; Volk RF; DeLeon AJ; Bramer LM; Fansler SJ; Hansen JR; Shukla AK; Jansson JK; Thrall BD; Wright AT
    J Am Chem Soc; 2019 Jan; 141(1):42-47. PubMed ID: 30541282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal differential proteomes of Clostridium difficile in the pig ileal-ligated loop model.
    Janvilisri T; Scaria J; Teng CH; McDonough SP; Gleed RD; Fubini SL; Zhang S; Akey B; Chang YF
    PLoS One; 2012; 7(9):e45608. PubMed ID: 23029131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional gel electrophoresis in bacterial proteomics.
    Curreem SO; Watt RM; Lau SK; Woo PC
    Protein Cell; 2012 May; 3(5):346-63. PubMed ID: 22610887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion.
    Hall CI; Reese ML; Weerapana E; Child MA; Bowyer PW; Albrow VE; Haraldsen JD; Phillips MR; Sandoval ED; Ward GE; Cravatt BF; Boothroyd JC; Bogyo M
    Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10568-73. PubMed ID: 21670272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxoplasma gondii proteomics.
    Weiss LM; Fiser A; Angeletti RH; Kim K
    Expert Rev Proteomics; 2009 Jun; 6(3):303-13. PubMed ID: 19489701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of activity-based probes to the study of enzymes involved in cancer progression.
    Paulick MG; Bogyo M
    Curr Opin Genet Dev; 2008 Feb; 18(1):97-106. PubMed ID: 18294838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics of the human malaria parasite Plasmodium falciparum.
    Sims PF; Hyde JE
    Expert Rev Proteomics; 2006 Feb; 3(1):87-95. PubMed ID: 16445353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics meets microbiology: technical advances in the global mapping of protein expression and function.
    Phillips CI; Bogyo M
    Cell Microbiol; 2005 Aug; 7(8):1061-76. PubMed ID: 16008574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes.
    Roe MR; Griffin TJ
    Proteomics; 2006 Sep; 6(17):4678-87. PubMed ID: 16888762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics in medical microbiology.
    Cash P
    Electrophoresis; 2000 Apr; 21(6):1187-201. PubMed ID: 10786891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in proteomics: implications for the study of cardiac hypertrophy and failure.
    Faber MJ; Agnetti G; Bezstarosti K; Lankhuizen IM; Dalinghaus M; Guarnieri C; Caldarera CM; Helbing WA; Lamers JM
    Cell Biochem Biophys; 2006; 44(1):11-29. PubMed ID: 16456231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods of comparative proteomic profiling for disease diagnostics.
    Steel LF; Haab BB; Hanash SM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):275-84. PubMed ID: 15652816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics in the study of the molecular taxonomy and epidemiology of bacterial pathogens.
    Cash P
    Electrophoresis; 2009 Jun; 30 Suppl 1():S133-41. PubMed ID: 19517493
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.