These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16009310)

  • 1. Modeling the energy content of combustible ship-scrapping waste at Alang-Sosiya, India, using multiple regression analysis.
    Reddy MS; Basha S; Joshi HV; Sravan Kumar VG; Jha B; Ghosh PK
    Waste Manag; 2005; 25(7):747-54. PubMed ID: 16009310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification and classification of ship scraping waste at Alang-Sosiya, India.
    Srinivasa Reddy M; Basha S; Sravan Kumar VG; Joshi HV; Ghosh PK
    Mar Pollut Bull; 2003 Dec; 46(12):1609-14. PubMed ID: 14643788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution, enrichment and accumulation of heavy metals in coastal sediments of Alang-Sosiya ship scrapping yard, India.
    Reddy MS; Basha S; Sravan Kumar VG; Joshi HV; Ramachandraiah G
    Mar Pollut Bull; 2004 Jun; 48(11-12):1055-9. PubMed ID: 15172811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of potential RDF resources from solid waste and their energy values in the largest industrial city of Korea.
    Dong TT; Lee BK
    Waste Manag; 2009 May; 29(5):1725-31. PubMed ID: 19136242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the Energy Content of Municipal Solid Waste Using Multiple Regression Analysis.
    Liu JI; Paode RD; Holsen TM
    J Air Waste Manag Assoc; 1996 Jul; 46(7):650-656. PubMed ID: 28081392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to estimating potential maximum heavy metal exposure to ship recycling yard workers in Alang, India.
    Deshpande PC; Tilwankar AK; Asolekar SR
    Sci Total Environ; 2012 Nov; 438():304-11. PubMed ID: 23018053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple regression models for the lower heating value of municipal solid waste in Taiwan.
    Chang YF; Lin CJ; Chyan JM; Chen IM; Chang JE
    J Environ Manage; 2007 Dec; 85(4):891-9. PubMed ID: 17234326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combustible and incombustible speciation of Cl and S in various components of municipal solid waste.
    Watanabe N; Yamamoto O; Sakai M; Fukuyama J
    Waste Manag; 2004; 24(6):623-32. PubMed ID: 15219921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.
    Gidarakos E; Havas G; Ntzamilis P
    Waste Manag; 2006; 26(6):668-79. PubMed ID: 16207528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Municipal solid waste management in India: From waste disposal to recovery of resources?
    Narayana T
    Waste Manag; 2009 Mar; 29(3):1163-6. PubMed ID: 18829290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of energy recovery from poultry litter and municipal solid waste by thermochemical conversion method in India.
    Kirubakaran V; Sivaramakrishnan V; Premalatha M; Subramanian P
    J Environ Sci Eng; 2005 Oct; 47(4):266-75. PubMed ID: 17051912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of municipal plastic wastes: Influence of raw material composition.
    López A; de Marco I; Caballero BM; Laresgoiti MF; Adrados A
    Waste Manag; 2010 Apr; 30(4):620-7. PubMed ID: 19926462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of residual MSW heating value as a function of waste component recycling.
    Magrinho A; Semiao V
    Waste Manag; 2008 Dec; 28(12):2675-83. PubMed ID: 18313281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life-cycle assessment of municipal solid wastes: development of the WASTED model.
    Diaz R; Warith M
    Waste Manag; 2006; 26(8):886-901. PubMed ID: 16153816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag; 2014 Nov; 34(11):2163-70. PubMed ID: 25074716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Municipal waste management in Sicily: practices and challenges.
    Messineo A; Panno D
    Waste Manag; 2008; 28(7):1201-8. PubMed ID: 17604152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of household waste in Greenland.
    Eisted R; Christensen TH
    Waste Manag; 2011 Jul; 31(7):1461-6. PubMed ID: 21420845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition.
    Lin X; Wang F; Chi Y; Huang Q; Yan J
    Waste Manag; 2015 Feb; 36():24-32. PubMed ID: 25536862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.