BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

898 related articles for article (PubMed ID: 16009330)

  • 21. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L
    Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An appraisal of multiple NADPH binding-site models proposed for cytochrome P450 reductase, NO synthase, and related diflavin reductase systems.
    Daff S
    Biochemistry; 2004 Apr; 43(13):3929-32. PubMed ID: 15049700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase.
    Meints CE; Simtchouk S; Wolthers KR
    FEBS J; 2013 Mar; 280(6):1460-74. PubMed ID: 23332101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase.
    Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR
    Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues.
    Gutierrez A; Munro AW; Grunau A; Wolf CR; Scrutton NS; Roberts GC
    Eur J Biochem; 2003 Jun; 270(12):2612-21. PubMed ID: 12787027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct measurement by laser flash photolysis of intramolecular electron transfer in a two-domain construct of murine inducible nitric oxide synthase.
    Feng C; Thomas C; Holliday MA; Tollin G; Salerno JC; Ghosh DK; Enemark JH
    J Am Chem Soc; 2006 Mar; 128(11):3808-11. PubMed ID: 16536556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the FAD binding domain of cytochrome P450 reductase.
    Hodgson AV; Strobel HW
    Arch Biochem Biophys; 1996 Jan; 325(1):99-106. PubMed ID: 8554349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases.
    Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM
    Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
    Matsuda H; Iyanagi T
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of the redox properties of human NADPH-cytochrome P450 reductase.
    Munro AW; Noble MA; Robledo L; Daff SN; Chapman SK
    Biochemistry; 2001 Feb; 40(7):1956-63. PubMed ID: 11329262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid kinetic studies of electron transfer in the three isoforms of nitric oxide synthase.
    Miller RT; Martásek P; Omura T; Siler Masters BS
    Biochem Biophys Res Commun; 1999 Nov; 265(1):184-8. PubMed ID: 10548511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
    Welland A; Daff S
    FEBS J; 2010 Sep; 277(18):3833-43. PubMed ID: 20718865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL; Kasper CB
    Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-electron reduction of quinones by the neuronal nitric-oxide synthase reductase domain.
    Matsuda H; Kimura S; Iyanagi T
    Biochim Biophys Acta; 2000 Jul; 1459(1):106-16. PubMed ID: 10924903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.