BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16009331)

  • 1. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants.
    Truong NT; Naseri JI; Vogel A; Rompel A; Krebs B
    Arch Biochem Biophys; 2005 Aug; 440(1):38-45. PubMed ID: 16009331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean.
    Schenk G; Ge Y; Carrington LE; Wynne CJ; Searle IR; Carroll BJ; Hamilton S; de Jersey J
    Arch Biochem Biophys; 1999 Oct; 370(2):183-9. PubMed ID: 10510276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression and characterization of recombinant purple acid phosphatase from red kidney bean.
    Vogel A; Börchers T; Marcus K; Meyer HE; Krebs B; Spener F
    Arch Biochem Biophys; 2002 May; 401(2):164-72. PubMed ID: 12054466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate positioning by His92 is important in catalysis by purple acid phosphatase.
    Funhoff EG; Wang Y; Andersson G; Averill BA
    FEBS J; 2005 Jun; 272(12):2968-77. PubMed ID: 15955057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant purple acid phosphatase isoform 3 from sweet potato is an enzyme with a diiron metal center.
    Waratrujiwong T; Krebs B; Spener F; Visoottiviseth P
    FEBS J; 2006 Apr; 273(8):1649-59. PubMed ID: 16623702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a mammalian purple acid phosphatase.
    Uppenberg J; Lindqvist F; Svensson C; Ek-Rylander B; Andersson G
    J Mol Biol; 1999 Jul; 290(1):201-11. PubMed ID: 10388567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase.
    Wang Y; Norgård M; Andersson G
    Arch Biochem Biophys; 2005 Mar; 435(1):147-56. PubMed ID: 15680916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme-phosphate-fluoride complex as a model for the active enzyme-substrate-hydroxide complex.
    Pinkse MW; Merkx M; Averill BA
    Biochemistry; 1999 Aug; 38(31):9926-36. PubMed ID: 10433699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase.
    Flanagan JU; Cassady AI; Schenk G; Guddat LW; Hume DA
    Gene; 2006 Aug; 377():12-20. PubMed ID: 16793224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fe(III)Zn(II) form of recombinant human purple acid phosphatase is not activated by proteolysis.
    Funhoff EG; Bollen M; Averill BA
    J Inorg Biochem; 2005 Feb; 99(2):521-9. PubMed ID: 15621285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures.
    Klabunde T; Sträter N; Fröhlich R; Witzel H; Krebs B
    J Mol Biol; 1996 Jun; 259(4):737-48. PubMed ID: 8683579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase.
    Schenk G; Gahan LR; Carrington LE; Mitic N; Valizadeh M; Hamilton SE; de Jersey J; Guddat LW
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):273-8. PubMed ID: 15625111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique structural features of red kidney bean purple acid phosphatase.
    Cashikar AG; Rao MN
    Indian J Biochem Biophys; 1995 Jun; 32(3):130-6. PubMed ID: 7590853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative theoretical studies of the phosphomonoester hydrolysis mechanism by purple acid phosphatases.
    Retegan M; Milet A; Jamet H
    J Phys Chem A; 2010 Jul; 114(26):7110-6. PubMed ID: 20550096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purple acid phosphatase-like sequences in prokaryotic genomes and the characterization of an atypical purple alkaline phosphatase from Burkholderia cenocepacia J2315.
    Yeung SL; Cheng C; Lui TK; Tsang JS; Chan WT; Lim BL
    Gene; 2009 Jul; 440(1-2):1-8. PubMed ID: 19376213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-ion mutagenesis: conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent Mn(II)Mn(II) active site.
    Mitić N; Noble CJ; Gahan LR; Hanson GR; Schenk G
    J Am Chem Soc; 2009 Jun; 131(23):8173-9. PubMed ID: 19507905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of the interaction between active site residues and the loop region in mammalian purple acid phosphatases.
    Funhoff EG; Ljusberg J; Wang Y; Andersson G; Averill BA
    Biochemistry; 2001 Sep; 40(38):11614-22. PubMed ID: 11560512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-glycosylation sites of plant purple acid phosphatases important for protein expression and secretion in insect cells.
    Olczak M; Olczak T
    Arch Biochem Biophys; 2007 May; 461(2):247-54. PubMed ID: 17367744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases.
    Valizadeh M; Schenk G; Nash K; Oddie GW; Guddat LW; Hume DA; de Jersey J; Burke TR; Hamilton S
    Arch Biochem Biophys; 2004 Apr; 424(2):154-62. PubMed ID: 15047187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid-DFT study on electronic structures of the active site of sweet potato purple acid phosphatase: the origin of stronger antiferromagnetic couplings than other purple acid phosphatases.
    Koizumi K; Yamaguchi K; Nakamura H; Takano Y
    J Phys Chem A; 2009 Apr; 113(17):5099-104. PubMed ID: 19354205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.