BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16009351)

  • 1. Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells.
    Iwata Y; Katanosaka Y; Shijun Z; Kobayashi Y; Hanada H; Shigekawa M; Wakabayashi S
    Biochem Pharmacol; 2005 Sep; 70(5):740-51. PubMed ID: 16009351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel.
    Iwata Y; Katanosaka Y; Arai Y; Komamura K; Miyatake K; Shigekawa M
    J Cell Biol; 2003 Jun; 161(5):957-67. PubMed ID: 12796481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models.
    Iwata Y; Katanosaka Y; Arai Y; Shigekawa M; Wakabayashi S
    Hum Mol Genet; 2009 Mar; 18(5):824-34. PubMed ID: 19050039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells.
    Benders AA; Groenen PJ; Oerlemans FT; Veerkamp JH; Wieringa B
    J Clin Invest; 1997 Sep; 100(6):1440-7. PubMed ID: 9294109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy.
    Dowling P; Doran P; Ohlendieck K
    Biochem J; 2004 Apr; 379(Pt 2):479-88. PubMed ID: 14678011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapamycin and FK506 reduce skeletal muscle voltage sensor expression and function.
    Avila G; Dirksen RT
    Cell Calcium; 2005 Jul; 38(1):35-44. PubMed ID: 15955561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium homeostasis and cell death in Sol8 dystrophin-deficient cell line in culture.
    Marchand E; Constantin B; Vandebrouck C; Raymond G; Cognard C
    Cell Calcium; 2001 Feb; 29(2):85-96. PubMed ID: 11162846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters.
    Nakamura TY; Iwata Y; Sampaolesi M; Hanada H; Saito N; Artman M; Coetzee WA; Shigekawa M
    Am J Physiol Cell Physiol; 2001 Aug; 281(2):C690-9. PubMed ID: 11443068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.
    Benders AA; Wevers RA; Veerkamp JH
    Acta Physiol Scand; 1996 Mar; 156(3):355-67. PubMed ID: 8729696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes.
    Marchand E; Constantin B; Balghi H; Claudepierre MC; Cantereau A; Magaud C; Mouzou A; Raymond G; Braun S; Cognard C
    Exp Cell Res; 2004 Jul; 297(2):363-79. PubMed ID: 15212940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretch-induced cell damage in sarcoglycan-deficient myotubes.
    Sampaolesi M; Yoshida T; Iwata Y; Hanada H; Shigekawa M
    Pflugers Arch; 2001 May; 442(2):161-70. PubMed ID: 11417209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18.
    Han R; Grounds MD; Bakker AJ
    Cell Calcium; 2006 Sep; 40(3):299-307. PubMed ID: 16765438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of diltiazem or verapamil on calcium uptake and release from chicken skeletal muscle sarcoplasmic reticulum.
    Paydar MJ; Pousti A; Farsam H; Amanlou M; Mehr SE; Dehpour AR
    Can J Physiol Pharmacol; 2005 Nov; 83(11):967-75. PubMed ID: 16391705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium entry through stretch-inactivated ion channels in mdx myotubes.
    Franco A; Lansman JB
    Nature; 1990 Apr; 344(6267):670-3. PubMed ID: 1691450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epsilon-sarcoglycan compensates for lack of alpha-sarcoglycan in a mouse model of limb-girdle muscular dystrophy.
    Imamura M; Mochizuki Y; Engvall E; Takeda S
    Hum Mol Genet; 2005 Mar; 14(6):775-83. PubMed ID: 15689353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mini-dystrophin expression down-regulates IP3-mediated calcium release events in resting dystrophin-deficient muscle cells.
    Balghi H; Sebille S; Mondin L; Cantereau A; Constantin B; Raymond G; Cognard C
    J Gen Physiol; 2006 Aug; 128(2):219-30. PubMed ID: 16847098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic administration of L-arginine benefits mdx skeletal muscle function.
    Barton ER; Morris L; Kawana M; Bish LT; Toursel T
    Muscle Nerve; 2005 Dec; 32(6):751-60. PubMed ID: 16116642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanosensitive ion channels in skeletal muscle: a link in the membrane pathology of muscular dystrophy.
    Lansman JB; Franco-Obregón A
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):649-56. PubMed ID: 16789935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress.
    Leijendekker WJ; Passaquin AC; Metzinger L; Rüegg UT
    Br J Pharmacol; 1996 Jun; 118(3):611-6. PubMed ID: 8762085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of P2 receptors.
    Iwata Y; Katanosaka Y; Hisamitsu T; Wakabayashi S
    Am J Pathol; 2007 Nov; 171(5):1576-87. PubMed ID: 17823278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.