BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16009489)

  • 1. Cometabolic degradation of TCE in enriched nitrifying batch systems.
    Kocamemi BA; Ceçen F
    J Hazard Mater; 2005 Oct; 125(1-3):260-5. PubMed ID: 16009489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.
    Kocamemi BA; Ceçen F
    Bioresour Technol; 2010 Jan; 101(1):430-3. PubMed ID: 19729301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation.
    Alpaslan Kocamemi B; Ceçen F
    Biodegradation; 2007 Feb; 18(1):71-81. PubMed ID: 16467966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cometabolic degradation and inhibition kinetics of 1,2-dichloroethane (1,2-DCA) in suspended-growth nitrifying systems.
    Kocamemi BA; Ceçen F
    Environ Technol; 2010 Mar; 31(3):295-305. PubMed ID: 20426271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures.
    Lee CY; Liu WD
    J Hazard Mater; 2006 Sep; 137(1):541-9. PubMed ID: 16621274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.
    Jung IG; Park OH
    J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia.
    Yang L; Chang Y; Chou M
    J Hazard Mater; 1999 Oct; 69(1):111-26. PubMed ID: 10502610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance.
    Sipkema EM; de Koning W; Ganzeveld KJ; Janssen DB; Beenackers AA
    Biotechnol Prog; 2000; 16(2):189-98. PubMed ID: 10753443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cometabolic degradation of TCE vapors in a foamed emulsion bioreactor.
    Kan E; Deshusses MA
    Environ Sci Technol; 2006 Feb; 40(3):1022-8. PubMed ID: 16509352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene.
    Han YL; Kuo MC; Tseng IC; Lu CJ
    J Hazard Mater; 2007 Sep; 148(3):583-91. PubMed ID: 17412499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils.
    Suttinun O; Müller R; Luepromchai E
    Biodegradation; 2009 Apr; 20(2):281-91. PubMed ID: 18846429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of trichloroethylene (TCE) by methanotrophic community.
    Shukla AK; Vishwakarma P; Upadhyay SN; Tripathi AK; Prasana HC; Dubey SK
    Bioresour Technol; 2009 May; 100(9):2469-74. PubMed ID: 19157866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.
    Haest PJ; Springael D; Smolders E
    Water Res; 2010 Jan; 44(1):331-9. PubMed ID: 19818985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on cometabolic bioventing for the in situ remediation of trichloroethylene.
    Sui H; Li X; Huang G; Jiang B
    Environ Geochem Health; 2006; 28(1-2):147-52. PubMed ID: 16541300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor.
    Volcík V; Hoffmann J; Růzicka J; Sergejevová M
    J Environ Manage; 2005 Mar; 74(4):293-304. PubMed ID: 15737454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The biodegradation of trichloroethylene by a methanotrophic bacterium].
    Shen R; Li S
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):63-9. PubMed ID: 12549391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sorption and desorption resistance on aerobic trichloroethylene biodegradation in soils.
    Lee S; Moe WM; Valsaraj KT; Pardue JH
    Environ Toxicol Chem; 2002 Aug; 21(8):1609-17. PubMed ID: 12152760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.