These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16009489)

  • 21. Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils.
    Mera N; Iwasaki K
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):437-45. PubMed ID: 17940764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trichloroethylene aerobic cometabolism by suspended and immobilized butane-growing microbial consortia: a kinetic study.
    Frascari D; Zanaroli G; Bucchi G; Rosato A; Tavanaie N; Fraraccio S; Pinelli D; Fava F
    Bioresour Technol; 2013 Sep; 144():529-38. PubMed ID: 23896437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.
    Powell CL; Nogaro G; Agrawal A
    Biodegradation; 2011 Jun; 22(3):527-38. PubMed ID: 20957410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trichloroethylene biodegradation by phenoloxidizing cultures grown from various conditions.
    Lee CY; Cheng SZ
    J Environ Sci Health B; 1998 Nov; 33(6):705-21. PubMed ID: 9830134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The opposing effects of bacterial activity and gas production on anaerobic TCE degradation in soil columns.
    Singhal N; Jaffé P; Maier W; Jho EH
    Chemosphere; 2007 Nov; 69(11):1790-7. PubMed ID: 17610933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of microbiological hydrolysis of urea on the nitrification process.
    Krogulska B; Rekosz H; Mycielski R
    Acta Microbiol Pol; 1983; 32(4):373-80. PubMed ID: 6202105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene.
    Reij MW; Kieboom J; de Bont JA; Hartmans S
    Appl Environ Microbiol; 1995 Aug; 61(8):2936-42. PubMed ID: 7487026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil.
    Fan S; Scow KM
    Appl Environ Microbiol; 1993 Jun; 59(6):1911-8. PubMed ID: 8328806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology.
    Cutright TJ; Meza L
    Environ Int; 2007 Apr; 33(3):338-45. PubMed ID: 17188356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Importance of cadmium speciation in nitrification inhibition.
    Semerci N; Ceçen F
    J Hazard Mater; 2007 Aug; 147(1-2):503-12. PubMed ID: 17307290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE.
    Hazen TC; Chakraborty R; Fleming JM; Gregory IR; Bowman JP; Jimenez L; Zhang D; Pfiffner SM; Brockman FJ; Sayler GS
    Arch Microbiol; 2009 Mar; 191(3):221-32. PubMed ID: 19034430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures.
    Qiao S; Matsumoto N; Shinohara T; Nishiyama T; Fujii T; Bhatti Z; Furukawa K
    Bioresour Technol; 2010 Jan; 101(1):111-7. PubMed ID: 19709879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation.
    Lee W; Wood TK; Chen W
    Biotechnol Bioeng; 2006 Oct; 95(3):399-403. PubMed ID: 16862598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB
    Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture.
    Friis AK; Heimann AC; Jakobsen R; Albrechtsen HJ; Cox E; Bjerg PL
    Water Res; 2007 Jan; 41(2):355-64. PubMed ID: 17129596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures.
    Eng W; Palumbo AV; Sriharan S; Strandberg GW
    Appl Biochem Biotechnol; 1991; 28-29():887-99. PubMed ID: 1929390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistics of trichloroethylene mineralization by the white-rot fungus Trametes versicolor.
    Marco-Urrea E; Parella T; Gabarrell X; Caminal G; Vicent T; Adinarayana Reddy C
    Chemosphere; 2008 Jan; 70(3):404-10. PubMed ID: 17697698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrification in natural waters with high suspended-solid content--a study for the Yellow River.
    Xia XH; Yang ZF; Huang GH; Zhang XQ; Yu H; Rong X
    Chemosphere; 2004 Nov; 57(8):1017-29. PubMed ID: 15488592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on radiation technological degradation of organic chloride wastewater--exemplified by TCE and PCE.
    Huang SK; Hsieh LL; Chen CC; Lee PH; Hsieh BT
    Appl Radiat Isot; 2009; 67(7-8):1493-8. PubMed ID: 19297179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles.
    Wang SM; Tseng SK
    Bioresour Technol; 2009 Jan; 100(1):111-7. PubMed ID: 18603424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.