These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 16009513)
61. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084 [TBL] [Abstract][Full Text] [Related]
62. Novel poly(amido amine)s with bioreducible disulfide linkages in their diamino-units: structure effects and in vitro gene transfer properties. Piest M; Lin C; Mateos-Timoneda MA; Lok MC; Hennink WE; Feijen J; Engbersen JF J Control Release; 2008 Aug; 130(1):38-45. PubMed ID: 18585814 [TBL] [Abstract][Full Text] [Related]
63. Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Shen Y; Tang H; Zhan Y; Van Kirk EA; Murdoch WJ Nanomedicine; 2009 Jun; 5(2):192-201. PubMed ID: 19223244 [TBL] [Abstract][Full Text] [Related]
64. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Jones RA; Cheung CY; Black FE; Zia JK; Stayton PS; Hoffman AS; Wilson MR Biochem J; 2003 May; 372(Pt 1):65-75. PubMed ID: 12583812 [TBL] [Abstract][Full Text] [Related]
65. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Guo M; Que C; Wang C; Liu X; Yan H; Liu K Biomaterials; 2011 Jan; 32(1):185-94. PubMed ID: 21067808 [TBL] [Abstract][Full Text] [Related]
66. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides. Chen R; Khormaee S; Eccleston ME; Slater NK Biomaterials; 2009 Apr; 30(10):1954-61. PubMed ID: 19138797 [TBL] [Abstract][Full Text] [Related]
67. Nanoscale Melittin@Zeolitic Imidazolate Frameworks for Enhanced Anticancer Activity and Mechanism Analysis. Li Y; Xu N; Zhu W; Wang L; Liu B; Zhang J; Xie Z; Liu W ACS Appl Mater Interfaces; 2018 Jul; 10(27):22974-22984. PubMed ID: 29920061 [TBL] [Abstract][Full Text] [Related]
68. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger. Oude Blenke E; Sleszynska M; Evers MJ; Storm G; Martin NI; Mastrobattista E Bioconjug Chem; 2017 Feb; 28(2):574-582. PubMed ID: 28004569 [TBL] [Abstract][Full Text] [Related]
69. pH-responsive polymer-drug conjugates: Design and progress. Pang X; Jiang Y; Xiao Q; Leung AW; Hua H; Xu C J Control Release; 2016 Jan; 222():116-29. PubMed ID: 26704934 [TBL] [Abstract][Full Text] [Related]
70. Targeting lipodisks enable selective delivery of anticancer peptides to tumor cells. Ahlgren S; Reijmar K; Edwards K Nanomedicine; 2017 Oct; 13(7):2325-2328. PubMed ID: 28712916 [TBL] [Abstract][Full Text] [Related]
71. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. Bazban-Shotorbani S; Hasani-Sadrabadi MM; Karkhaneh A; Serpooshan V; Jacob KI; Moshaverinia A; Mahmoudi M J Control Release; 2017 May; 253():46-63. PubMed ID: 28242418 [TBL] [Abstract][Full Text] [Related]
72. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Maeda H J Control Release; 2012 Dec; 164(2):138-44. PubMed ID: 22595146 [TBL] [Abstract][Full Text] [Related]
73. Poly(amidoamine)s with potential as drug carriers: degradation and cellular toxicity. Ranucci E; Spagnoli G; Ferruti P; Sgouras D; Duncan R J Biomater Sci Polym Ed; 1991; 2(4):303-15. PubMed ID: 1772834 [TBL] [Abstract][Full Text] [Related]
75. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Lv S; Sylvestre M; Song K; Pun SH Biomaterials; 2021 Oct; 277():121076. PubMed ID: 34461456 [TBL] [Abstract][Full Text] [Related]
76. Cationic poly(amidoamine) promotes cytosolic delivery of bovine RNase A in melanoma cells, while maintaining its cellular toxicity. Dubois JLN; Lavignac N J Mater Chem B; 2015 Aug; 3(31):6501-6508. PubMed ID: 32262558 [TBL] [Abstract][Full Text] [Related]
77. Amphoteric, prevailingly cationic L-arginine polymers of poly(amidoamino acid) structure: synthesis, acid/base properties and preliminary cytocompatibility and cell-permeating characterizations. Ferruti P; Mauro N; Falciola L; Pifferi V; Bartoli C; Gazzarri M; Chiellini F; Ranucci E Macromol Biosci; 2014 Mar; 14(3):390-400. PubMed ID: 24821667 [TBL] [Abstract][Full Text] [Related]
78. Synthesis, characterization and the release kinetics of antiproliferative agents from polyamidoamine conjugates. Aderibigbe BA; Sadiku ER; Ray SS; Mbianda XY; Fotsing MC; Jayaramudu J; Owonubi SJ J Microencapsul; 2015; 32(5):432-42. PubMed ID: 26268953 [TBL] [Abstract][Full Text] [Related]
79. Membrane-Anchoring, Comb-Like Pseudopeptides for Efficient, pH-Mediated Membrane Destabilization and Intracellular Delivery. Chen S; Wang S; Kopytynski M; Bachelet M; Chen R ACS Appl Mater Interfaces; 2017 Mar; 9(9):8021-8029. PubMed ID: 28225250 [TBL] [Abstract][Full Text] [Related]
80. Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies. Yu X; Jia S; Yu S; Chen Y; Zhang C; Chen H; Dai Y J Nanobiotechnology; 2023 Nov; 21(1):454. PubMed ID: 38017537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]