These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16009839)

  • 21. Implantation of silicon chip microphotodiode arrays into the cat subretinal space.
    Chow AY; Pardue MT; Chow VY; Peyman GA; Liang C; Perlman JI; Peachey NS
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):86-95. PubMed ID: 11482368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development.
    Sachs HG; Gekeler F; Schwahn H; Jakob W; Köhler M; Schulmeyer F; Marienhagen J; Brunner U; Framme C
    Eur J Ophthalmol; 2005; 15(4):493-9. PubMed ID: 16001384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits.
    Walter P; Szurman P; Vobig M; Berk H; Lüdtke-Handjery HC; Richter H; Mittermayer C; Heimann K; Sellhaus B
    Retina; 1999; 19(6):546-52. PubMed ID: 10606457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical activation via an implanted wireless retinal prosthesis.
    Walter P; Kisvárday ZF; Görtz M; Alteheld N; Rossler G; Stieglitz T; Eysel UT
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1780-5. PubMed ID: 15851582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit.
    Gerding H; Benner FP; Taneri S
    J Neural Eng; 2007 Mar; 4(1):S38-49. PubMed ID: 17325415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa.
    Chow AY; Chow VY; Packo KH; Pollack JS; Peyman GA; Schuchard R
    Arch Ophthalmol; 2004 Apr; 122(4):460-9. PubMed ID: 15078662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subretinal semiconductor microphotodiode array.
    Peyman G; Chow AY; Liang C; Chow VY; Perlman JI; Peachey NS
    Ophthalmic Surg Lasers; 1998 Mar; 29(3):234-41. PubMed ID: 9547778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards the bionic eye--the retina implant: surgical, opthalmological and histopathological perspectives.
    Alteheld N; Roessler G; Walter P
    Acta Neurochir Suppl; 2007; 97(Pt 2):487-93. PubMed ID: 17691339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Advanced research in the retinal prosthesis].
    Zou YY; Wang JT; Li XR
    Zhonghua Yan Ke Za Zhi; 2009 Nov; 45(11):1052-4. PubMed ID: 20137426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The very large electrode array for retinal stimulation (VLARS)-A concept study.
    Lohmann TK; Haiss F; Schaffrath K; Schnitzler AC; Waschkowski F; Barz C; van der Meer AM; Werner C; Johnen S; Laube T; Bornfeld N; Mazinani BE; Rößler G; Mokwa W; Walter P
    J Neural Eng; 2019 Nov; 16(6):066031. PubMed ID: 31480027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repeated transchoroidal implantation and explantation of compound subretinal prostheses: an exploratory study in rabbits.
    Gekeler F; Kobuch K; Blatsios G; Zrenner E; Shinoda K
    Jpn J Ophthalmol; 2010 Sep; 54(5):467-75. PubMed ID: 21052911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinal prosthesis.
    Weiland JD; Liu W; Humayun MS
    Annu Rev Biomed Eng; 2005; 7():361-401. PubMed ID: 16004575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography.
    Völker M; Shinoda K; Sachs H; Gmeiner H; Schwarz T; Kohler K; Inhoffen W; Bartz-Schmidt KU; Zrenner E; Gekeler F
    Graefes Arch Clin Exp Ophthalmol; 2004 Sep; 242(9):792-9. PubMed ID: 15179515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors.
    Zrenner E; Miliczek KD; Gabel VP; Graf HG; Guenther E; Haemmerle H; Hoefflinger B; Kohler K; Nisch W; Schubert M; Stett A; Weiss S
    Ophthalmic Res; 1997; 29(5):269-80. PubMed ID: 9323718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Will retinal implants restore vision?
    Zrenner E
    Science; 2002 Feb; 295(5557):1022-5. PubMed ID: 11834821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A preliminary implementation of an active intraocular prosthesis as a new image acquisition device for a cortical visual prosthesis.
    Shim S; Seo K; Kim SJ
    J Artif Organs; 2020 Sep; 23(3):262-269. PubMed ID: 32342231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Technical construction, calibration and results with a new intraocular pressure sensor with telemetric transmission].
    Hille K; Draeger J; Eggers T; Stegmaier P
    Klin Monbl Augenheilkd; 2001 May; 218(5):376-80. PubMed ID: 11417341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of thermal effects of infrared lasers on the rabbit retina: a study in the course of development of an active subretinal prosthesis.
    Sailer H; Shinoda K; Blatsios G; Kohler K; Bondzio L; Zrenner E; Gekeler F
    Graefes Arch Clin Exp Ophthalmol; 2007 Aug; 245(8):1169-78. PubMed ID: 17219111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.