These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 16010427)

  • 1. Potentiation of the antitumor activity of alpha, alpha, alpha-trifluorothymidine by the co-administration of an inhibitor of thymidine phosphorylase at a suitable molar ratio in vivo.
    Emura T; Suzuki N; Fujioka A; Ohshimo H; Fukushima M
    Int J Oncol; 2005 Aug; 27(2):449-55. PubMed ID: 16010427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymidine kinase and thymidine phosphorylase level as the main predictive parameter for sensitivity to TAS-102 in a mouse model.
    Emura T; Nakagawa F; Fujioka A; Ohshimo H; Kitazato K
    Oncol Rep; 2004 Feb; 11(2):381-7. PubMed ID: 14719072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel combination antimetabolite, TAS-102, exhibits antitumor activity in FU-resistant human cancer cells through a mechanism involving FTD incorporation in DNA.
    Emura T; Suzuki N; Yamaguchi M; Ohshimo H; Fukushima M
    Int J Oncol; 2004 Sep; 25(3):571-8. PubMed ID: 15289858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimal dosing schedule for a novel combination antimetabolite, TAS-102, based on its intracellular metabolism and its incorporation into DNA.
    Emura T; Nakagawa F; Fujioka A; Ohshimo H; Yokogawa T; Okabe H; Kitazato K
    Int J Mol Med; 2004 Feb; 13(2):249-55. PubMed ID: 14719131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of a thymidine phosphorylase inhibitor on angiogenesis and apoptosis in tumors.
    Matsushita S; Nitanda T; Furukawa T; Sumizawa T; Tani A; Nishimoto K; Akiba S; Miyadera K; Fukushima M; Yamada Y; Yoshida H; Kanzaki T; Akiyama S
    Cancer Res; 1999 Apr; 59(8):1911-6. PubMed ID: 10213500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor 2'-deoxyribonucleosides.
    Fukushima M; Suzuki N; Emura T; Yano S; Kazuno H; Tada Y; Yamada Y; Asao T
    Biochem Pharmacol; 2000 May; 59(10):1227-36. PubMed ID: 10736423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of 5-fluorouracil host-toxicity and chemotherapeutic efficacy against human colon tumors by 5-(Phenylthio)acyclouridine, a uridine phosphorylase inhibitor.
    Al Safarjalani ON; Rais R; Shi J; Schinazi RF; Naguib FN; el Kouni MH
    Cancer Chemother Pharmacol; 2006 Nov; 58(5):692-8. PubMed ID: 16528530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Up-regulation of thymidine phosphorylase and anti-angiogenesis by interferon alpha in human hepatocellular carcinoma cell line and xenograft].
    Xiao YS; Zhou J; Tang ZY; Fan J; Wu ZQ; Liu YK; Ye SL; Shen ZZ; Xue Q; Zhao Y
    Zhonghua Yi Xue Za Zhi; 2005 Nov; 85(45):3205-9. PubMed ID: 16405841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetic modeling of species-dependent enhanced bioavailability of trifluorothymidine by thymidine phosphorylase inhibitor.
    Tsuchiya H; Kuwata K; Nagayama S; Yamashita K; Kamiya H; Harashima H
    Drug Metab Pharmacokinet; 2004 Jun; 19(3):206-15. PubMed ID: 15499188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor activity of erlotinib in combination with capecitabine in human tumor xenograft models.
    Ouchi KF; Yanagisawa M; Sekiguchi F; Tanaka Y
    Cancer Chemother Pharmacol; 2006 May; 57(5):693-702. PubMed ID: 16362295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of thymidine phosphorylase as a means of preventing thymidine rescue from the thymidylate synthase inhibitor raltitrexed.
    Graham-Cole CL; Thomas HD; Taylor GA; Newell DR; Melton RG; Hesp R; Boddy AV
    Cancer Chemother Pharmacol; 2007 Feb; 59(2):197-206. PubMed ID: 16721548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiosensitization by thymidine phosphorylase inhibitor in thymidine phosphorylase negative and overexpressing bladder cancer cell lines.
    El-Naggar M; Ebbing E; Bijnsdorp I; van den Berg J; Peters GJ
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):413-21. PubMed ID: 24940699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thymidine phosphorylase-mediated angiogenesis regulated by thymidine phosphorylase inhibitor in human ovarian cancer cells in vivo.
    Tsukagoshi S; Saga Y; Suzuki N; Fujioka A; Nakagawa F; Fukushima M; Suzuki M
    Int J Oncol; 2003 May; 22(5):961-7. PubMed ID: 12684660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hollow Fibre Assay as a model for in vivo pharmacodynamics of fluoropyrimidines in colon cancer cells.
    Temmink OH; Prins HJ; van Gelderop E; Peters GJ
    Br J Cancer; 2007 Jan; 96(1):61-6. PubMed ID: 17179993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 1: discovery of novel orally active inhibitors of human thymidine phosphorylase.
    Yano S; Kazuno H; Suzuki N; Emura T; Wierzba K; Yamashita J; Tada Y; Yamada Y; Fukushima M; Asao T
    Bioorg Med Chem; 2004 Jul; 12(13):3431-41. PubMed ID: 15186829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of thymidine phosphorylase-mediated angiogenesis and tumor growth by 2-deoxy-L-ribose.
    Uchimiya H; Furukawa T; Okamoto M; Nakajima Y; Matsushita S; Ikeda R; Gotanda T; Haraguchi M; Sumizawa T; Ono M; Kuwano M; Kanzaki T; Akiyama S
    Cancer Res; 2002 May; 62(10):2834-9. PubMed ID: 12019161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of the thymidine phosphorylase (platelet-derived endothelial cell growth factor) on tumor angiogenesis. Catalytic activity of enzyme inhibitors].
    Miszczak-Zaborska E; Smolarek M; Bartkowiak J
    Postepy Biochem; 2010; 56(1):61-6. PubMed ID: 20499682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase I study to determine the safety and pharmacokinetics of oral administration of TAS-102 in patients with solid tumors.
    Hong DS; Abbruzzese JL; Bogaard K; Lassere Y; Fukushima M; Mita A; Kuwata K; Hoff PM
    Cancer; 2006 Sep; 107(6):1383-90. PubMed ID: 16902987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antitumor activity of ZD1694 (tomudex) against human head and neck cancer in nude mouse models: role of dosing schedule and plasma thymidine.
    Cao S; McGuire JJ; Rustum YM
    Clin Cancer Res; 1999 Jul; 5(7):1925-34. PubMed ID: 10430100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broad antitumor activity in breast cancer xenografts by motesanib, a highly selective, oral inhibitor of vascular endothelial growth factor, platelet-derived growth factor, and Kit receptors.
    Coxon A; Bush T; Saffran D; Kaufman S; Belmontes B; Rex K; Hughes P; Caenepeel S; Rottman JB; Tasker A; Patel V; Kendall R; Radinsky R; Polverino A
    Clin Cancer Res; 2009 Jan; 15(1):110-8. PubMed ID: 19118038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.