These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16010536)
41. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Barth C; Jander G Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593 [TBL] [Abstract][Full Text] [Related]
42. Glucosinolate Sulfatases-Sulfatase-Modifying Factors System Enables a Crucifer-Specialized Moth To Pre-detoxify Defensive Glucosinolate of the Host Plant. Chen W; Saqib HSA; Xu X; Dong Y; Zheng L; Lai Y; Jing X; Lu Z; Sun L; You M; He W J Agric Food Chem; 2022 Sep; 70(36):11179-11191. PubMed ID: 36043275 [TBL] [Abstract][Full Text] [Related]
43. Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth). Møldrup ME; Geu-Flores F; de Vos M; Olsen CE; Sun J; Jander G; Halkier BA Plant Biotechnol J; 2012 May; 10(4):435-42. PubMed ID: 22256859 [TBL] [Abstract][Full Text] [Related]
44. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Levy M; Wang Q; Kaspi R; Parrella MP; Abel S Plant J; 2005 Jul; 43(1):79-96. PubMed ID: 15960618 [TBL] [Abstract][Full Text] [Related]
45. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Poelman EH; Broekgaarden C; Van Loon JJ; Dicke M Mol Ecol; 2008 Jul; 17(14):3352-65. PubMed ID: 18565114 [TBL] [Abstract][Full Text] [Related]
46. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Zavala JA; Nabity PD; DeLucia EH Annu Rev Entomol; 2013; 58():79-97. PubMed ID: 22974069 [TBL] [Abstract][Full Text] [Related]
47. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358 [TBL] [Abstract][Full Text] [Related]
48. Induction and Priming of Plant Defense by Root-Associated Insect-Pathogenic Fungi. Cachapa JC; Meyling NV; Burow M; Hauser TP J Chem Ecol; 2021 Jan; 47(1):112-122. PubMed ID: 33180275 [TBL] [Abstract][Full Text] [Related]
49. Sulfur fertilization increases defense metabolites and nitrogen but decreases plant resistance against a host-specific insect. Santos NA; Teixeira NC; Valim JOS; Almeida EFA; Oliveira MGA; Campos WG Bull Entomol Res; 2018 Aug; 108(4):479-486. PubMed ID: 29061199 [TBL] [Abstract][Full Text] [Related]
50. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Reichelt M; Brown PD; Schneider B; Oldham NJ; Stauber E; Tokuhisa J; Kliebenstein DJ; Mitchell-Olds T; Gershenzon J Phytochemistry; 2002 Mar; 59(6):663-71. PubMed ID: 11867099 [TBL] [Abstract][Full Text] [Related]
51. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
52. Variation and fitness costs for tolerance to different types of herbivore damage in Boechera stricta genotypes with contrasting glucosinolate structures. Manzaneda AJ; Prasad KV; Mitchell-Olds T New Phytol; 2010 Oct; 188(2):464-77. PubMed ID: 20663059 [TBL] [Abstract][Full Text] [Related]
53. Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. Bekaert M; Edger PP; Hudson CM; Pires JC; Conant GC New Phytol; 2012 Oct; 196(2):596-605. PubMed ID: 22943527 [TBL] [Abstract][Full Text] [Related]
54. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Kissen R; Eberl F; Winge P; Uleberg E; Martinussen I; Bones AM Phytochemistry; 2016 Oct; 130():106-18. PubMed ID: 27319377 [TBL] [Abstract][Full Text] [Related]
55. The influence of metabolically engineered glucosinolates profiles in Arabidopsis thaliana on Plutella xylostella preference and performance. Sarosh BR; Wittstock U; Halkier BA; Ekbom B Chemoecology; 2010 Mar; 20(1):1-9. PubMed ID: 20339445 [TBL] [Abstract][Full Text] [Related]
56. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation. Liu T; Zhang X; Yang H; Agerbirk N; Qiu Y; Wang H; Shen D; Song J; Li X Front Plant Sci; 2016; 7():83. PubMed ID: 26904055 [TBL] [Abstract][Full Text] [Related]
57. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
58. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Bodenhausen N; Reymond P Mol Plant Microbe Interact; 2007 Nov; 20(11):1406-20. PubMed ID: 17977152 [TBL] [Abstract][Full Text] [Related]