BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16010544)

  • 1. Afuni, a novel transforming growth factor-beta gene is involved in arm regeneration by the brittle star Amphiura filiformis.
    Bannister R; McGonnell IM; Graham A; Thorndyke MC; Beesley PW
    Dev Genes Evol; 2005 Aug; 215(8):393-401. PubMed ID: 16010544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coelomic expression of a novel bone morphogenetic protein in regenerating arms of the brittle star Amphiura filiformis.
    Bannister R; McGonnell IM; Graham A; Thorndyke MC; Beesley PW
    Dev Genes Evol; 2008 Jan; 218(1):33-8. PubMed ID: 18060425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo.
    Stenzel P; Angerer LM; Smith BJ; Angerer RC; Vale WW
    Dev Biol; 1994 Nov; 166(1):149-58. PubMed ID: 7958442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization and phylogenetic analysis of SpBMP5-7, a new member of the TGF-beta superfamily expressed in sea urchin embryos.
    Ponce MR; Micol JL; Peterson KJ; Davidson EH
    Mol Biol Evol; 1999 May; 16(5):634-45. PubMed ID: 10335657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis.
    Czarkwiani A; Dylus DV; Oliveri P
    Gene Expr Patterns; 2013 Dec; 13(8):464-72. PubMed ID: 24051028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anbmp2/4 is a new member of the transforming growth factor-beta superfamily isolated from a crinoid and involved in regeneration.
    Patruno M; McGonnell I; Graham A; Beesley P; Candia Carnevali MD; Thorndyke M
    Proc Biol Sci; 2003 Jul; 270(1522):1341-7. PubMed ID: 12965024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis.
    Dupont S; Thorndyke MC
    J Exp Biol; 2006 Oct; 209(Pt 19):3873-81. PubMed ID: 16985203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family.
    Paralkar VM; Vail AL; Grasser WA; Brown TA; Xu H; Vukicevic S; Ke HZ; Qi H; Owen TA; Thompson DD
    J Biol Chem; 1998 May; 273(22):13760-7. PubMed ID: 9593718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echinococcus multilocularis: molecular characterization of EmSmadE, a novel BR-Smad involved in TGF-β and BMP signaling.
    Epping K; Brehm K
    Exp Parasitol; 2011 Oct; 129(2):85-94. PubMed ID: 21802416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus.
    Shih LJ; Chen CA; Chen CP; Hwang SP
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Feb; 131(2):143-51. PubMed ID: 11818237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone morphogenetic proteins.
    Chen D; Zhao M; Mundy GR
    Growth Factors; 2004 Dec; 22(4):233-41. PubMed ID: 15621726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish Smad7 is regulated by Smad3 and BMP signals.
    Pogoda HM; Meyer D
    Dev Dyn; 2002 Jul; 224(3):334-49. PubMed ID: 12112463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration.
    Vickery MC; Vickery MS; McClintock JB; Amsler CD
    Gene; 2001 Jan; 262(1-2):73-80. PubMed ID: 11179669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular matrix gene expression during arm regeneration in Amphiura filiformis.
    Ferrario C; Czarkwiani A; Dylus DV; Piovani L; Candia Carnevali MD; Sugni M; Oliveri P
    Cell Tissue Res; 2020 Sep; 381(3):411-426. PubMed ID: 32350640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal regeneration in the brittle star Amphiura filiformis.
    Czarkwiani A; Ferrario C; Dylus DV; Sugni M; Oliveri P
    Front Zool; 2016; 13():18. PubMed ID: 27110269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue-undergoing regeneration.
    Purushothaman S; Saxena S; Meghah V; Swamy CV; Ortega-Martinez O; Dupont S; Idris M
    J Proteomics; 2015 Jan; 112():113-24. PubMed ID: 25178173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGF signalling plays similar roles in development and regeneration of the skeleton in the brittle star Amphiura filiformis.
    Czarkwiani A; Dylus DV; Carballo L; Oliveri P
    Development; 2021 May; 148(10):. PubMed ID: 34042967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental aspects of arm repair phase in two echinoderm models.
    Ferrario C; Ben Khadra Y; Czarkwiani A; Zakrzewski A; Martinez P; Colombo G; Bonasoro F; Candia Carnevali MD; Oliveri P; Sugni M
    Dev Biol; 2018 Jan; 433(2):297-309. PubMed ID: 29291979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-evaluating the induction of bone formation in primates.
    Ripamonti U; Duarte R; Ferretti C
    Biomaterials; 2014 Nov; 35(35):9407-22. PubMed ID: 25155544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae.
    Delroisse J; Ortega-Martinez O; Dupont S; Mallefet J; Flammang P
    Mar Genomics; 2015 Oct; 23():109-21. PubMed ID: 26044617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.