BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16010551)

  • 21. Identification of hemocyanin as a novel non-cross-reactive allergen from the giant freshwater shrimp Macrobrachium rosenbergii.
    Piboonpocanun S; Jirapongsananuruk O; Tipayanon T; Boonchoo S; Goodman RE
    Mol Nutr Food Res; 2011 Oct; 55(10):1492-8. PubMed ID: 21656669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and functional characterization of lectin with phenoloxidase activity from the hemolymph of cockroach, Periplaneta americana.
    Arumugam G; Sreeramulu B; Paulchamy R; Thangavel S; Sundaram J
    Arch Insect Biochem Physiol; 2017 Jun; 95(2):. PubMed ID: 28557066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice?
    Jaenicke E; Fraune S; May S; Irmak P; Augustin R; Meesters C; Decker H; Zimmer M
    Dev Comp Immunol; 2009 Oct; 33(10):1055-63. PubMed ID: 19447131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification of tyrosinase to homogeneity based on its resistance to sodium dodecyl sulfate-proteinase K digestion.
    Yurkow EJ; Laskin JD
    Arch Biochem Biophys; 1989 Nov; 275(1):122-9. PubMed ID: 2510599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of ultrasound to the activity of tyrosinase.
    Yu ZL; Zeng WC; Lu XL
    Ultrason Sonochem; 2013 May; 20(3):805-9. PubMed ID: 23207057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The o-diphenol oxidase activity of arthropod hemocyanin.
    Zlateva T; Di Muro P; Salvato B; Beltramini M
    FEBS Lett; 1996 Apr; 384(3):251-4. PubMed ID: 8617365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity, evolution, and function of myriapod hemocyanins.
    Scherbaum S; Hellmann N; Fernández R; Pick C; Burmester T
    BMC Evol Biol; 2018 Jul; 18(1):107. PubMed ID: 29976142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary history and diversity of arthropod hemocyanins.
    Burmester T
    Micron; 2004; 35(1-2):121-2. PubMed ID: 15036313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin.
    Campello S; Beltramini M; Giordano G; Di Muro P; Marino SM; Bubacco L
    Arch Biochem Biophys; 2008 Mar; 471(2):159-67. PubMed ID: 18237542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterisation of hemocyanin of the fish louse Argulus (Crustacea: Branchiura).
    Pinnow P; Fabrizius A; Pick C; Burmester T
    J Comp Physiol B; 2016 Feb; 186(2):161-8. PubMed ID: 26515963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenoloxidase activity of intact and chemically modified functional unit RvH1: a from molluscan Rapana venosa hemocyanin.
    Dolashki A; Voelter W; Dolashka P
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Sep; 160(1):1-7. PubMed ID: 21536147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The reaction of CN- with the binuclear copper site of Neurospora tyrosinase: its relevance for a comparison between tyrosinase and hemocyanin active sites.
    Beltramini M; Salvato B; Santamaria M; Lerch K
    Biochim Biophys Acta; 1990 Sep; 1040(3):365-72. PubMed ID: 2145978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctions of MelB, a fungal tyrosinase from Aspergillus oryzae.
    Fujieda N; Murata M; Yabuta S; Ikeda T; Shimokawa C; Nakamura Y; Hata Y; Itoh S
    Chembiochem; 2012 Jan; 13(2):193-201. PubMed ID: 22213164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cold-adapted tyrosinase with an abnormally high monophenolase/diphenolase activity ratio originating from the marine archaeon Candidatus Nitrosopumilus koreensis.
    Kim H; Yeon YJ; Choi YR; Song W; Pack SP; Choi YS
    Biotechnol Lett; 2016 Sep; 38(9):1535-42. PubMed ID: 27193894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insect melanogenesis. III. Metabolon formation in the melanogenic pathway-regulation of phenoloxidase activityy by endogenous dopachrome isomerase (decarboxylating) from Manduca sexta.
    Sugumaran M; Nellaiappan K; Amaratunga C; Cardinale S; Scott T
    Arch Biochem Biophys; 2000 Jun; 378(2):393-403. PubMed ID: 10860557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates.
    Kim YJ; Chung JE; Kurisawa M; Uyama H; Kobayashi S
    Biomacromolecules; 2004; 5(2):474-9. PubMed ID: 15003008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unification for the expression of the monophenolase and diphenolase activities of tyrosinase.
    Fenoll LG; Rodríguez-López JN; García-Molina F; García-Cánovas F; Tudela J
    IUBMB Life; 2002 Sep; 54(3):137-41. PubMed ID: 12489641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity.
    Salvato B; Santamaria M; Beltramini M; Alzuet G; Casella L
    Biochemistry; 1998 Oct; 37(40):14065-77. PubMed ID: 9760242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.