These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 16010663)
1. The crucial role of calcium interacting with soil pH in enhanced biodegradation of metam-sodium. Warton B; Matthiessen JN Pest Manag Sci; 2005 Sep; 61(9):856-62. PubMed ID: 16010663 [TBL] [Abstract][Full Text] [Related]
2. Microbial aspects of accelerated degradation of metam sodium in soil. Triky-Dotan S; Ofek M; Austerweil M; Steiner B; Minz D; Katan J; Gamliel A Phytopathology; 2010 Apr; 100(4):367-75. PubMed ID: 20205540 [TBL] [Abstract][Full Text] [Related]
3. Incompatibility of metam sodium with halogenated fumigants. Guo M; Yates SR; Papiernik SK; Zheng W Pest Manag Sci; 2005 May; 61(5):467-76. PubMed ID: 15816019 [TBL] [Abstract][Full Text] [Related]
4. Distribution and efficacy of drip-applied metam-sodium against the survival of Rhizoctonia solani and yellow nutsedge in plastic-mulched sandy soil beds. Candole BL; Csinos AS; Wang D Pest Manag Sci; 2007 May; 63(5):468-75. PubMed ID: 17397113 [TBL] [Abstract][Full Text] [Related]
5. Predominance of char sorption over substrate concentration and soil pH in influencing biodegradation of benzonitrile. Zhang P; Sheng G; Feng Y; Miller DM Biodegradation; 2006 Feb; 17(1):1-8. PubMed ID: 16453166 [TBL] [Abstract][Full Text] [Related]
6. Accelerated degradation of metam-sodium in soil and consequences for root-disease management. Triky-Dotan S; Austerweil M; Steiner B; Peretz-Alon Y; Katan J; Gamliel A Phytopathology; 2009 Apr; 99(4):362-8. PubMed ID: 19271977 [TBL] [Abstract][Full Text] [Related]
7. Modeling methyl isothiocyanate soil flux and emission ratio from a field following a chemigation of metam-sodium. Li LY; Barry T; Mongar K; Wofford P J Environ Qual; 2006; 35(3):707-13. PubMed ID: 16585612 [TBL] [Abstract][Full Text] [Related]
8. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Bending GD; Lincoln SD; Edmondson RN Environ Pollut; 2006 Jan; 139(2):279-87. PubMed ID: 16043274 [TBL] [Abstract][Full Text] [Related]
9. Behavior of methyl isothiocyanate in soils under field conditions in Morocco. El Hadiri N; Ammati M; Chgoura M; Mounir K Chemosphere; 2003 Aug; 52(5):927-32. PubMed ID: 12757794 [TBL] [Abstract][Full Text] [Related]
10. Transformation of chloropicrin and 1,3-dichloropropene by metam sodium in a combined application of fumigants. Zheng W; Yates SR; Guo M; Papiernik SK; Kim JH J Agric Food Chem; 2004 May; 52(10):3002-9. PubMed ID: 15137846 [TBL] [Abstract][Full Text] [Related]
11. Enrichment and molecular characterization of chloropicrin- and metam-sodium-degrading microbial communities. Ibekwe AM; Papiernik SK; Yang CH Appl Microbiol Biotechnol; 2004 Dec; 66(3):325-32. PubMed ID: 15309337 [TBL] [Abstract][Full Text] [Related]
12. Influence of metam sodium on the dissipation and residual biological activity of the herbicides EPTC and pebulate in surface soil under black plastic mulch. Stiles CL; Sams CE; Robinson DK; Coffey DL; Mueller TC J Agric Food Chem; 2000 Oct; 48(10):4681-6. PubMed ID: 11052719 [TBL] [Abstract][Full Text] [Related]
13. Adsorption and degradation of four acidic herbicides in soils from southern Spain. Villaverde J; Kah M; Brown CD Pest Manag Sci; 2008 Jul; 64(7):703-10. PubMed ID: 18283714 [TBL] [Abstract][Full Text] [Related]
14. Metam sodium intoxication: the specific role of degradation products--methyl isothiocyanate and carbon disulphide--as a function of exposure. Bretaudeau Deguigne M; Lagarce L; Boels D; Harry P Clin Toxicol (Phila); 2011 Jun; 49(5):416-22. PubMed ID: 21740140 [TBL] [Abstract][Full Text] [Related]
15. Effects of application methods of metam sodium and plastic covers on horizontal and vertical distributions of methyl isothiocyanate in bedded field plots. Ou LT; Thomas JE; Allen LH; Vu JC; Dickson DW Arch Environ Contam Toxicol; 2006 Aug; 51(2):164-73. PubMed ID: 16583255 [TBL] [Abstract][Full Text] [Related]
16. The effects of various soil factors and amendments on the degradation of pesticide mixtures. Schoen SR; Winterlin WL J Environ Sci Health B; 1987 Jun; 22(3):347-77. PubMed ID: 3655189 [TBL] [Abstract][Full Text] [Related]
17. Degradation of pesticides in biobeds: the effect of concentration and pesticide mixtures. Fogg P; Boxall AB; Walker A J Agric Food Chem; 2003 Aug; 51(18):5344-9. PubMed ID: 12926881 [TBL] [Abstract][Full Text] [Related]
18. Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. Arshad M; Hussain S; Saleem M J Appl Microbiol; 2008 Feb; 104(2):364-70. PubMed ID: 17922824 [TBL] [Abstract][Full Text] [Related]
19. Fumigant distribution in forest nursery soils under water seal and plastic film after application of dazomet, metam-sodium and chloropicrin. Wang D; Fraedrich SW; Juzwik J; Spokas K; Zhang Y; Koskinen WC Pest Manag Sci; 2006 Mar; 62(3):263-73. PubMed ID: 16475238 [TBL] [Abstract][Full Text] [Related]
20. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils. Fernández-Bayo JD; Nogales R; Romero E J Agric Food Chem; 2009 Jun; 57(12):5435-42. PubMed ID: 19530717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]