BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16010862)

  • 1. Transport of thalidomide by the human intestinal caco-2 monolayers.
    Zhou S; Li Y; Kestell P; Schafer P; Chan E; Paxton JW
    Eur J Drug Metab Pharmacokinet; 2005; 30(1-2):49-61. PubMed ID: 16010862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of thalidomide in transport buffer for Caco-2 cell monolayers by high-performance liquid chromatography with ultraviolet detection.
    Zhou S; Li Y; Kestell P; Paxton JW
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Feb; 785(1):165-73. PubMed ID: 12535849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells.
    Makhey VD; Guo A; Norris DA; Hu P; Yan J; Sinko PJ
    Pharm Res; 1998 Aug; 15(8):1160-7. PubMed ID: 9706044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Wu X; Whitfield LR; Stewart BH
    Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide by human intestinal Caco-2 cells.
    Zhou S; Feng X; Kestell P; Paxton JW; Baguley BC; Chan E
    Eur J Pharm Sci; 2005 Apr; 24(5):513-24. PubMed ID: 15784341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport characteristics of peptidomimetics. Effect of the pyrrolinone bioisostere on transport across Caco-2 cell monolayers.
    Sudoh M; Pauletti GM; Yao W; Moser W; Yokoyama A; Pasternak A; Sprengeler PA; Smith AB; Hirschmann R; Borchardt RT
    Pharm Res; 1998 May; 15(5):719-25. PubMed ID: 9619780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption and transport of pachymic acid in the human intestinal cell line Caco-2 monolayers.
    Zheng Y; Yang XW
    Zhong Xi Yi Jie He Xue Bao; 2008 Jul; 6(7):704-10. PubMed ID: 18601852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model].
    Ma L; Yang XW
    Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Absorption and transport of isoflavonoid compounds from Tongmai formula across human intestinal epithelial (Caco-2) cells in vitro].
    Wang FR; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2017 Aug; 42(16):3206-3212. PubMed ID: 29171242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers.
    Wang Y; Cao J; Wang X; Zeng S
    Chirality; 2010 Mar; 22(3):361-8. PubMed ID: 19575464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line.
    Grès MC; Julian B; Bourrié M; Meunier V; Roques C; Berger M; Boulenc X; Berger Y; Fabre G
    Pharm Res; 1998 May; 15(5):726-33. PubMed ID: 9619781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter.
    Horie K; Tang F; Borchardt RT
    Pharm Res; 2003 Feb; 20(2):161-8. PubMed ID: 12636153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide in Caco-2 monolayers by liquid chromatography with fluorescence detection: application to transport studies.
    Zhou S; Feng X; Kestell P; Baguley BC; Paxton JW
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Sep; 809(1):87-97. PubMed ID: 15282097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein.
    Bourdet DL; Thakker DR
    Pharm Res; 2006 Jun; 23(6):1165-77. PubMed ID: 16741655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleobase- and p-glycoprotein-mediated transport of AG337 in a Caco-2 cell culture model.
    Hu M; Chen J
    Mol Pharm; 2004; 1(3):194-200. PubMed ID: 15981922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport characteristics of fexofenadine in the Caco-2 cell model.
    Petri N; Tannergren C; Rungstad D; Lennernäs H
    Pharm Res; 2004 Aug; 21(8):1398-404. PubMed ID: 15359574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transepithelial transport of rosuvastatin and effect of ursolic acid on its transport in Caco-2 monolayers.
    Hua WJ; Fang HJ; Hua WX
    Eur J Drug Metab Pharmacokinet; 2012 Sep; 37(3):225-31. PubMed ID: 22562361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier mechanisms involved in the transepithelial transport of bis(POM)-PMEA and its metabolites across Caco-2 monolayers.
    Annaert P; Van Gelder J; Naesens L; De Clercq E; Van den Mooter G; Kinget R; Augustijns P
    Pharm Res; 1998 Aug; 15(8):1168-73. PubMed ID: 9706045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers.
    Liang E; Proudfoot J; Yazdanian M
    Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine).
    Smetanova L; Stetinova V; Kholova D; Kvetina J; Smetana J; Svoboda Z
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():101-5. PubMed ID: 20027153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.