These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 1601097)

  • 1. Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate.
    Johansson RS; Häger C; Riso R
    Exp Brain Res; 1992; 89(1):192-203. PubMed ID: 1601097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude.
    Johansson RS; Riso R; Häger C; Bäckström L
    Exp Brain Res; 1992; 89(1):181-91. PubMed ID: 1601096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia.
    Johansson RS; Hger C; Bäckström L
    Exp Brain Res; 1992; 89(1):204-13. PubMed ID: 1601098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction at the digit-object interface scales the sensorimotor transformation for grip responses to pulling loads.
    Cole KJ; Johansson RS
    Exp Brain Res; 1993; 95(3):523-32. PubMed ID: 8224079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits.
    Macefield VG; Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):155-71. PubMed ID: 8721164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables.
    Häger-Ross C; Cole KJ; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):142-50. PubMed ID: 8817265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits.
    Macefield VG; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):172-84. PubMed ID: 8721165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-varying enhancement of human cortical excitability mediated by cutaneous inputs during precision grip.
    Johansson RS; Lemon RN; Westling G
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):761-75. PubMed ID: 7707242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loads applied tangential to a fingertip during an object restraint task can trigger short-latency as well as long-latency EMG responses in hand muscles.
    Macefield VG; Johansson RS
    Exp Brain Res; 2003 Sep; 152(2):143-9. PubMed ID: 12898103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precision grip and Parkinson's disease.
    Fellows SJ; Noth J; Schwarz M
    Brain; 1998 Sep; 121 ( Pt 9)():1771-84. PubMed ID: 9762964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of central set on anticipatory and triggered grip-force adjustments.
    Winstein CJ; Horak FB; Fisher BE
    Exp Brain Res; 2000 Feb; 130(3):298-308. PubMed ID: 10706429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of human precision grip. V. anticipatory and triggered grip actions during sudden loading.
    Eliasson AC; Forssberg H; Ikuta K; Apel I; Westling G; Johansson R
    Exp Brain Res; 1995; 106(3):425-33. PubMed ID: 8983986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondigital afferent input in reactive control of fingertip forces during precision grip.
    Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):131-41. PubMed ID: 8817264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of cutaneous feedback for anticipatory grip force adjustments during object movements and externally imposed variation of the direction of gravity.
    Nowak DA; Glasauer S; Meyer L; Mait N; Hermsdörfer J
    Somatosens Mot Res; 2002; 19(1):49-60. PubMed ID: 11962646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal activity in somatosensory cortex of monkeys using a precision grip. III. Responses to altered friction perturbations.
    Salimi I; Brochier T; Smith AM
    J Neurophysiol; 1999 Feb; 81(2):845-57. PubMed ID: 10036285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grip force adjustments evoked by load force perturbations of a grasped object.
    Cole KJ; Abbs JH
    J Neurophysiol; 1988 Oct; 60(4):1513-22. PubMed ID: 3193168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of human precision grip. I: Basic coordination of force.
    Forssberg H; Eliasson AC; Kinoshita H; Johansson RS; Westling G
    Exp Brain Res; 1991; 85(2):451-7. PubMed ID: 1893993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of grasp stability during pronation and supination movements.
    Johansson RS; Backlin JL; Burstedt MK
    Exp Brain Res; 1999 Sep; 128(1-2):20-30. PubMed ID: 10473736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of object weight and instruction on grip force adjustments.
    Winstein CJ; Abbs JH; Petashnick D
    Exp Brain Res; 1991; 87(2):465-9. PubMed ID: 1769397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation.
    Birznieks I; Burstedt MK; Edin BB; Johansson RS
    J Neurophysiol; 1998 Oct; 80(4):1989-2002. PubMed ID: 9772255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.