These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16010980)

  • 1. Glutathionylation of lens proteins through the formation of thioether bond.
    Linetsky M; LeGrand RD
    Mol Cell Biochem; 2005 Apr; 272(1-2):133-44. PubMed ID: 16010980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydroalanine crosslinks in human lens.
    Linetsky M; Hill JM; LeGrand RD; Hu F
    Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of thioether-linked glutathione modifications in human lens proteins.
    Wang Z; Schey KL
    Exp Eye Res; 2018 Oct; 175():83-89. PubMed ID: 29879394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human protein aging: modification and crosslinking through dehydroalanine and dehydrobutyrine intermediates.
    Wang Z; Lyons B; Truscott RJ; Schey KL
    Aging Cell; 2014 Apr; 13(2):226-34. PubMed ID: 24134651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunochemical detection of dicarbonyl-derived imidazolium protein crosslinks in human lenses.
    Shamsi FA; Nagaraj RH
    Curr Eye Res; 1999 Sep; 19(3):276-84. PubMed ID: 10487968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins.
    Kamei A
    Biol Pharm Bull; 1993 Sep; 16(9):870-5. PubMed ID: 8268853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of reversible versus irreversible protein glutathionylation.
    Townsend DM; Lushchak VI; Cooper AJ
    Adv Cancer Res; 2014; 122():177-98. PubMed ID: 24974182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible binding of kynurenine to lens proteins: potential protection by glutathione in young lenses.
    Parker NR; Korlimbinis A; Jamie JF; Davies MJ; Truscott RJ
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3705-13. PubMed ID: 17652742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide cross-linking of urea-insoluble proteins in rabbit lenses treated with hyperbaric oxygen.
    Padgaonkar V; Giblin FJ; Reddy VN
    Exp Eye Res; 1989 Nov; 49(5):887-99. PubMed ID: 2591503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new mixed disulfide species in human cataractous and aged lenses.
    Dickerson JE; Lou MF
    Biochim Biophys Acta; 1993 Jun; 1157(2):141-6. PubMed ID: 8507650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):907-913. PubMed ID: 29309825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism and function of glutathione in the lens.
    Reddy VN; Giblin FJ
    Ciba Found Symp; 1984; 106():65-87. PubMed ID: 6568981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lanthionine, a protein cross-link in cataractous human lenses.
    Bessems GJ; Rennen HJ; Hoenders HJ
    Exp Eye Res; 1987 May; 44(5):691-5. PubMed ID: 3622648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging.
    Nye-Wood MG; Spraggins JM; Caprioli RM; Schey KL; Donaldson PJ; Grey AC
    Exp Eye Res; 2017 Jan; 154():70-78. PubMed ID: 27838309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.