These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16011547)

  • 1. The shape of acetabular cartilage optimizes hip contact stress distribution.
    Daniel M; Iglic A; Kralj-Iglic V
    J Anat; 2005 Jul; 207(1):85-91. PubMed ID: 16011547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of articular incongruence and cartilage thickness in hip joint stresses distribution. A biphasic and two dimensional photoelastic study.
    Bernard PF; Christel PS; Meunier A; Gras R; Sedel L
    Acta Orthop Belg; 1982; 48(2):335-44. PubMed ID: 7090797
    [No Abstract]   [Full Text] [Related]  

  • 3. Multi-pelvis characterisation of articular cartilage geometry.
    Gillard FC; Dickinson AS; Schneider U; Taylor AC; Browne M
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1255-64. PubMed ID: 23966364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The shape of the acetabular cartilage surface: a geometric morphometric study using three-dimensional scanning.
    Gu D; Chen Y; Dai K; Zhang S; Yuan J
    Med Eng Phys; 2008 Oct; 30(8):1024-31. PubMed ID: 18276182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acetabular labrum tears on hip stability and labral strain in a joint compression model.
    Smith MV; Panchal HB; Ruberte Thiele RA; Sekiya JK
    Am J Sports Med; 2011 Jul; 39 Suppl():103S-10S. PubMed ID: 21709039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress.
    Gu DY; Hu F; Wei JH; Dai KR; Chen YZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8166-9. PubMed ID: 22256237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects.
    Sánchez Egea AJ; Valera M; Parraga Quiroga JM; Proubasta I; Noailly J; Lacroix D
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):444-50. PubMed ID: 24530154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A contribution to the functional morphology of articular surfaces.
    Tillmann B
    Norm Pathol Anat (Stuttg); 1978; 34():1-50. PubMed ID: 693316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric analysis of the stress distribution on the articular cartilage and subchondral bone.
    Wang Y; Wei HW; Yu TC; Cheng CK
    Biomed Mater Eng; 2007; 17(4):241-7. PubMed ID: 17611300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A morphological and functional analysis of the extent of cartilage coverage in the human hip joint].
    Breul R; Oberländer W; Kurrat HJ
    Gegenbaurs Morphol Jahrb; 1979; 125(6):779-96. PubMed ID: 551933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of the ovine hip: development, results and comparison with the human hip.
    Mazoochian F; Hölzer A; Jalali J; Schmidutz F; Schröder C; Woiczinski M; Maierl J; Augat P; Jansson V
    Vet Comp Orthop Traumatol; 2012; 25(4):301-6. PubMed ID: 22534728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum.
    Pawaskar SS; Grosland NM; Ingham E; Fisher J; Jin Z
    J Biomech; 2011 May; 44(8):1536-42. PubMed ID: 21439570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological analysis of the acetabular cartilage surface in elderly subjects.
    Akiyama K; Sakai T; Koyanagi J; Yoshikawa H; Sugamoto K
    Surg Radiol Anat; 2015 Oct; 37(8):963-8. PubMed ID: 25609359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetabular loading in active abduction.
    Kristan A; Mavcic B; Cimerman M; Iglis A; Tonin M; Slivnik T; Kralj-Iglic V; Daniel M
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):252-7. PubMed ID: 17601195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comments on the influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model.
    Mann RW
    J Biomech; 2002 Jan; 35(1):147-9. PubMed ID: 11747894
    [No Abstract]   [Full Text] [Related]  

  • 16. Biomechanical properties of hip cartilage in experimental animal models.
    Athanasiou KA; Agarwal A; Muffoletto A; Dzida FJ; Constantinides G; Clem M
    Clin Orthop Relat Res; 1995 Jul; (316):254-66. PubMed ID: 7634715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel modelling and simulation method of hip joint surface contact stress.
    Wang M; Wang L; Li P; Fu Y
    Bioengineered; 2017 Jan; 8(1):105-112. PubMed ID: 27696938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Articular cartilage friction increases in hip joints after the removal of acetabular labrum.
    Song Y; Ito H; Kourtis L; Safran MR; Carter DR; Giori NJ
    J Biomech; 2012 Feb; 45(3):524-30. PubMed ID: 22176711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of cartilage contact pressure and loading in the hip joint during split posture.
    Assassi L; Magnenat-Thalmann N
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):745-56. PubMed ID: 26450106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint.
    Eckstein F; von Eisenhart-Rothe R; Landgraf J; Adam C; Loehe F; Müller-Gerbl M; Putz R
    Acta Anat (Basel); 1997; 158(3):192-204. PubMed ID: 9394956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.